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Kosovskaia, Gätzner, Medding (ETH Zürich) Conformal Prediction Under Exchangeability May 6, 2025 1 / 73



Outline

1 Introduction
Motivation
Exchangeability
Setting
The Full Conformal Prediction Procedure

2 Proof and Split vs. Full Conformal Predictions
Naive Approach to Marginal Coverage
Proof of Marginal Coverage
Split vs. Full Conformal Prediction

3 Permutation tests
Procedure
Testing if a new data point is an outlier
Conformal prediction as a permutation test
Another marginal coverage guarantee proof
Tuning Based on a Plug-in Estimate of the error rate
Can conformal prediction be overly conservative?
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Uncertainty Quantification for Predictions

Data points (Xi ,Yi ) ∈ X × Y, e.g. regression (Xi ,Yi ) ∈ Rd × R.
Common task: Predict Yn+1 given Xn+1 and dataset {(Xi ,Yi )}ni=1

with some predictive model f̂ (Xn+1) e.g. neural net, linear model,
smoothing spline . . . .

Problem: Even if performance seems good empirically, e.g. high
cross validation R2 score, we have no real guarantee that inference
time predictions are accurate.

Solution: Use f̂ to construct prediction set C(Xn+1) ⊆ Y and get
guarantees for C(Xn+1)!

Important: Conformal prediction does not predict any probability,
density or distribution! It predicts a set of plausible labels, i.e. labels
that conform to the patterns in the observed data.
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Nice Properties of Conformal Prediction

Rigerous uncertainty quantification for predictive models.

No assumptions about predictive model.

No asymptotics, limit theorems, Gaussian approximations etc.

Only minimal assumptions on data-generating distribution
(exchangeability).
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Marginal Coverage

We aim for marginal coverage:

P(Yn+1 ∈ C(Xn+1)) ≥ 1− α

with user-specified error level α ∈ (0, 1).

In words: With high probability (at least 1− α), the true value is in
our prediction set C(Xn+1).

Intuition: C(Xn+1) large =⇒ high uncertainty.
C(Xn+1) small =⇒ low uncertainty.

Conformal prediction provides marginal coverage for all predictive
models f̂ , even very bad ones, but better models yield smaller (more
informative) prediction sets C(Xn+1).
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Sufficient condition

How to construct prediction sets with marginal coverage?

Sufficient condition: exchangeability.
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Exchangeability Definition

Definition (Exchangeability)

Let Z1, . . .Zn ∈ Z be random variables with a joint distribution. We say
that the random vector (Z1, . . . ,Zn) is exchangeable if, for every
permutation σ ∈ Sn,

(Z1, . . . ,Zn)
d
= (Zσ(1), . . . ,Zσ(n)),

where
d
= denotes equality in distribution, and Sn is the set of all

permutations on [n] := {1, . . . , n}.
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Reminder: Equality in Distribution

Definition (Equality in distribution)

A random variable Z1 ∈ Z is said to be equal in distribution to another

random variable Z2 ∈ Z, symbolically Z1
d
= Z2, their distribution functions

match point-wise, i.e. if for all z ∈ Z

P(Z1 ≤ z) = P(Z2 ≤ z).
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Definition (Exchangeability for infinite sequences)

Let Z1,Z2, · · · ∈ Z be an infinite sequence of random variables with a joint
distribution. We say that this infinite sequence is exchangeable if
(Z1, . . . ,Zn) is exchangeable for every n ≥ 1.
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Exchangeability Intuition

Statement about a random vector.

Intuition: Sequence is equally likely to appear in any order.

E.g. P is some distribution over {1, 2, 3} and we draw two
observations Z1,Z2, then

P(Z1 = 1,Z2 = 2) = P(Z1 = 2,Z2 = 1).
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Scenarios Where We Have Exchangeability

Exchangeability can arise in many scenarios. Non-exhaustive example
scenarios:

Scenario 1: If Z1, . . . ,Zn are sampled uniformly without replacement
from a potentially larger but finite set {z1, . . . , zN} with N ≥ n.

Scenario 2: If Z1, . . . ,Zn are drawn i.i.d. from a distribution P on Z.
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Conformal Prediction Under Exchangeability

Exchangeability. ✓

Next: How conformal prediction works and why.
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Setting

Exchangeable sequence of data points (X1,Y1), . . . , (Xn+1,Yn+1).

Task: Predict unobserved Yn+1 given everything else.

Notation: Upper case letters are random variables, lower case letters
are fixed values.

Conformal prediction constructs C(Xn+1) ⊂ Y with marginal
predictive coverage P(Yn+1 ∈ C(Xn+1)) ≥ 1− α.
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Scores

Construction uses score function s that maps a data point
(x , y) ∈ X × Y and dataset D ∈ (X × Y)k (of any size k) to a real
value s((x , y);D) ∈ R.
Interpretation: Score function measures error of model on a single
test point.

Similar to a loss function in machine learning. High score means bad
prediction, low score means good prediction.

Example: Residual score s((x , y);D) = |y − f̂ (x ;D)| where f̂ (x ;D) is
the prediction of a model trained on D.
We’ll assume symmetric score functions, i.e. functions that are
invariant to permutations of D.
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Symmetric Score Functions

Definition

A score function s is symmetric if for any data point (x , y) ∈ X × Y, any
dataset D ∈ (X × Y)k , and any permutation σ on [k], we have
deterministic equality

s((x , y);D) = s((x , y);Dσ)

where Dσ is the dataset, permuted by σ.
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The Full Conformal Prediction Procedure

Next: the full conformal prediction procedure.

High level idea: invert score function to identify possible values y ∈ Y
for the response Yn+1 that agree (or conform) with the trends
observed in the available data.
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Notation

Training set with n data points:

Dn = ((X1,Y1), . . . , (Xn,Yn)).

Training set plus one test point:

Dn+1 = ((X1,Y1), . . . , (Xn+1,Yn+1)).

Augmented dataset:

Dy
n+1 = ((X1,Y1), . . . , (Xn,Yn), (Xn+1, y)).

We call (Xn+1, y) the hypothesized test point and y the hypothesized
reponse value.

Score of ith data point within augmented dataset:

Sy
i =

{
s((Xi , y);Dy

n+1), if i = n + 1

s((Xi ,Yi );Dy
n+1), if i ∈ {1, . . . , n} .
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Figure: Illustration of notation for a single hypothesized response y . Grey
curve is regression model f̂ (x ;Dy

n+1). Grey dots are known data points (Xi ,Yi ) .
Yellow dot is hypothesized data point (Xn+1, y). Dotted lines are residual scores
Sy
i . q̂

y is the conformal quantile (defined next).
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Full Conformal Prediction Set

Consider some hypothesized response y ∈ Y.
If conformal score Sy

n+1 is large compared to Sy
1 , . . . ,S

y
n , then

hypothesized response y is inconsistent with the data and should
be excluded from C(Xn+1).

Construct C(Xn+1) by simply taking all y wich are consistent with
the data, i.e. have sufficiently small scores.

Formalizing this idea, we get

C(Xn+1) =
{
y ∈ Y : Sy

n+1 ≤ q̂y
}

with conformal quantile

q̂y = Quantile(Sy
1 , . . . ,S

y
n ; (1− α)(1 + 1/n)).

We’ll later see that C(Xn+1) actually provides correct coverage.
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How to Compute the Conformal Prediction Set

Easy to compute q̂y for a specific y ∈ Y.
How about computing C(Xn+1) =

{
y ∈ Y : Sy

n+1 ≤ q̂y
}
?

Discrete Y: Iterate over elements of Y and add to collection if the
score is at most q̂y . ✓
Continuous Y: More difficult but possible. Ideas:

1 Exploit model specific properties of e.g. linear regression or LASSO.
2 Discretize label space Y.

For details, see section 9.2 of the book.
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Marginal Coverage Guarantee of Conformal Prediction

Theorem (Marginal coverage guarantee of conformal prediction)

Suppose that (X1,Y1), . . . , (Xn+1,Yn+1) are exchangeable and that s is a
symmetric score function. Then the full conformal prediction set C(Xn+1)
satisfies the marginal coverage guarantee

P(Yn+1 ∈ C(Xn+1)) ≥ 1− α.

We’ll see a proof of this theorem later.
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Full Conformal Prediction Algorithm

Algorithm 1: Full conformal prediction

Input : training data (X1,Y1), . . . , (Xn,Yn),
test point Xn+1,
target coverage level 1− α,
conformal score function s

Output: prediction set C(Xn+1)
for y ∈ Y do

for i ∈ {1, . . . , n} do
Sy
i ← s((Xi ,Yi );Dy

n+1);

Sy
n+1 ← s((Xn+1, y);Dy

n+1);
q̂y ← Quantile(Sy

1 , . . . ,S
y
n ; (1− α)(1 + 1/n));

return
{
y ∈ Y : Sy

n+1 ≤ q̂y
}
;
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Kosovskaia, Gätzner, Medding (ETH Zürich) Conformal Prediction Under Exchangeability May 6, 2025 28 / 73



... repeat
① compute mode(·u ② compute scores

·
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Next Up

Naive approach to marginal coverage.

Proof of marginal coverage for full conformal prediction.

Split vs. full conformal prediction.
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Naive approach to marginal coverage

If Dn+1 = ((X1,Y1), . . . , (Xn+1,Yn+1)) is exchangeable, why not proceed
as follows:

1 Train a model on Dn and calculate the score on all the available data
pairs: {s(X1,Y1), . . . , s(Xn,Yn)}. This set is exchangeable.

2 Let qn = Quantile(s(X1,Y1), . . . s(Xn,Yn); (1− α)(1 + n)).

3 Define the prediction set C(Xn+1) := {y ∈ Y : s(Xn+1, y) ≤ qn}.
One could think that since Dn+1 is exchangeable, the scores of Dn+1

would also be. In this case, by definition of qn and exchangeability we
would have marginal coverage:

P(Yn+1 ∈ C(Xn+1)) ≥ 1− α.
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Naive approach to marginal coverage

Issue: The score s((Xn+1,Yn+1);Dn) is not exchangeable with the scores
{s(X1,Y1), . . . , s(Xn,Yn)}.

Since we trained the model on Dn, it might be overfitted to the training
data therefore causing the score of the test pair to be higher than the
others.

This leads to the (1− α)(1 + n)-Quantile of the scores
{s(X1,Y1), . . . , s(Xn,Yn)} being too low to ensure marginal coverage.
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Naive Approach to Marginal Coverage

To solve this problem, we consider two options.

1 If we could train our model on the test data as well, that would
reinstate exchangeability across all scores and we could get marginal
coverage.
This is the idea behind full conformal prediction: since we do not
know Yn+1, we instead train the model on all possible values that
Yn+1 could take, and so we determine for every y ∈ Y a threshold q̂y .

2 Or we have a model and a score function that do not depend on the
calibration data and (Xn+1,Yn+1). This idea leads to split conformal
prediction.
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Next Up

Naive approach to marginal coverage ✓

Proof of marginal coverage for full conformal prediction.

Split vs. full conformal prediction.
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Lemma 3.4: Replacement Lemma

Lemma

Let v1, . . . , vn+1 ∈ R. Then for any t ∈ [0, 1],

vn+1 ≤ Quantile(v1, . . . , vn+1; t)

⇐⇒ vn+1 ≤ Quantile(v1, . . . , vn; t(1 + 1/n)).
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Fact 2.14, Properties under exchangeability

Recall that a vector of random variables (Z1, . . . ,Zn) is exchangeable if for

every permutation σ ∈ Sn (Z1, . . . ,ZN)
d
= (Zσ(1), . . . ,Zσ(n))

Fact 2.14 ii)

Assume Z ∈ Rn is exchangeable, and fix any i ∈ [n]. Then we have that
for all τ ∈ [0, 1],

P(Zi ≤ Quantile(Z ; τ)) ≥ τ and, if τ > 0, P(Zi < Quantile(Z ; τ)) < τ.
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Proof of marginal coverage for full conformal prediction

We will follow these 3 Steps to prove that the full conformal prediction
algorithm satisfies marginal coverage:

1 Step 1: Reformuating the prediction set C(Xn+1).

2 Step 2: Proving the exchangeability of the scores.

3 Step 3: Proving that marginal coverage holds.
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Step 1: Reformulating the prediction set C(Xn+1)

By definition q̂y = Quantile(Sy
1 , . . . ,S

y
n ; (1− α)(1 + 1/n)) and by direct

application of Lemma 3.4 we get:

Sy
n+1 ≤ q̂y ⇐⇒ Sy

n+1 ≤ Quantile(Sy
1 , . . . ,S

y
n+1; 1− α)

So

y ∈ C(Xn+1) ⇐⇒ Sy
n+1 ≤ Quantile(Sy

1 , . . . ,S
y
n+1; 1− α).

Since this holds for every y ∈ Y we can conclude that

Yn+1 ∈ C(xn+1) ⇐⇒ Sn+1 ≤ Quantile(S1, . . . ,Sn+1; 1− α).

In the next steps we want to show that this holds with probability 1− α.
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Step 2: Exchangeability of the scores

Let σ be a permutation on {1, . . . , n + 1}. Since the score function is
symmetric, we have:

Si = s((Xi ,Yi );Dn+1) = s((Xi ,Yi ); (Dn+1)σ) ∀i
Sσ(i) = s((Xσ(i),Yσ(i));Dn+1) = s((Xσ(i),Yσ(i)); (Dn+1)σ) ∀i

So for exchangeability we want to prove that

(S1, . . . ,Sn+1)
d
= (Sσ(1), . . . ,Sσ(n+1))

which is equivalent to

[s((Xi ,Yi );Dn+1)]i∈[n+1]
d
= [s((Xσ(i),Yσ(i)); (Dn+1)σ)]i∈[n+1]
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Step 2: Exchangeability of the scores

By exchangeability of the data Dn+1
d
= (Dn+1)σ.

By applying the same function to these sets we get the following scores:

Dn+1 → [s((Xi ,Yi );Dn+1)]i∈[n+1] and

(Dn+1)σ → [s((Xσ(i),Yσ(i)); (Dn+1)σ)]i∈[n+1].

Thus

[s((Xi ,Yi );Dn+1)]i∈[n+1]
d
= [s((Xσ(i),Yσ(i)); (Dn+1)σ)]i∈[n+1]

which by the previous slide gives us exchangeability of the n + 1 scores.
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Step 3: Completing the proof

By fact 2.14 ii)

P(Sn+1 ≤ Quantile(S1, . . . ,Sn+1; τ)) ≥ τ ∀τ ∈ [0, 1]

Choosing τ = 1− α gives us:

P(Sn+1 ≤ Quantile(S1, . . . ,Sn+1; 1− α)) ≥ 1− α

which by step one was what we needed to show to complete the proof.
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Next Up

Naive approach to marginal coverage ✓

Proof of marginal coverage for full conformal prediction ✓

Split vs. full conformal prediction

Kosovskaia, Gätzner, Medding (ETH Zürich) Conformal Prediction Under Exchangeability May 6, 2025 43 / 73



Split Conformal Prediction as a Special Case

Consider a dataset Dpre , called the pretraining set, with Dpre ∩ Dn = ∅.
Dpre is only used for model training while Dn is used for calculating a
threshold to define the prediction set C(Xn+1)
By design, any score function s constructed on the pretraining set will be
symmetric, since s does not depend on Dn.

s((X ,Y );Dn) = s(X ,Y ) = s((X ,Y ), (Dn)σ).

Example: The residual score for split conformal is:

sres((x , y);Dn) = |y − f̂ (x ;Dpre)| = sres(x , y).
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Split Conformal Prediction as a Special Case

Definition (Definition 3.5)

Split conformal prediction refers to the case where the score function
s((x , y);D) does not depend on D. In this case, we write s(x , y) as a
shorthand for s((x , y);D)

The prediction set can then be constructed as follows:

C(Xn+1) := {y : s(Xn+1,, y) ≤ q̂}
q̂ := Quantile(S1, . . . ,Sn; (1− α)(1 + 1/n))

Remark: Note that q̂ is equivalent to q̂y (the threshold defined for full
conformal prediction) for all y in Y since the score does not depend on
any other data than Dpre .
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Algorithm for Split Conformal Prediction

Algorithm for Split Conformal

1 Input Dpre , (X1,Y1), . . . , (Xn,Yn), Xn+1, α.

2 Using the pretraining dataset Dpre construct a conformal score
function s : X × Y −→ R.

3 Compute the conformal scores Si = s(Xi ,Yi ) on the calibration set D.
4 Compute the quantile q̂ = Quantile(S1, . . . ,Sn; (1− α)(1 + 1/n)).

5 Return the prediction set C(Xn+1) = {y : s(Xn+1,, y) ≤ q̂}

Since this is a special case of Algorithm 3.3, the marginal coverage
guarantee still holds:

P(Yn+1 ∈ C(Xn+1)) ≥ 1− α.
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Conditions for Split Conformal

The most straightforward condition to justify the split conformal prediction
is to have Dpre independent of the calibration data and the test pair, and
(X1,Y1), . . . , (Xn+1,Yn+1) exchangeable.

This allows us to view the score function as a fixed function.

Under these conditions we have: (X1,Y1), . . . , (Xn+1,Yn+1)
exchangeable ⇒ s(X1,Y1), . . . , s(Xn+1,Yn+1) exchangeable.

But a weaker conditions would also suffice:

((X1,Y1), . . . , (Xn+1,Yn+1))|Dpre is exchangeable.

This means that (X1,Y1), . . . , (Xn+1,Yn+1) has an exchangeable
conditional distribution when conditioning on Dpre .
Example: This holds when the entire dataset (Dpre ,Dn, (Xn+1,Yn+1)) is
exchangeable.

Kosovskaia, Gätzner, Medding (ETH Zürich) Conformal Prediction Under Exchangeability May 6, 2025 47 / 73



Differences between Full and Split Conformal

Full Conformal Split Conformal

All data is used for both
training and calibration

Retrains the model for each
value y ∈ Y
Requires a symmetric score
function s

Disjoint datasets for training
and calibration

No model retraining
(requires only one model fit)

Works for any (pretrained)
score function s
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Statistical vs. Computational Efficiency

Split conformal predictions are more computationally efficient.

They only require the model f̂ to be trained once.

For full conformal predictions, f̂ needs to be retrained for all y ∈ Y.

Full conformal predictions are more statistically efficient.

All of the data available is used to train f̂ and determine C(Xn+1).

With the split conformal method only part of the data can be used for
training and the other part for calibrating. In general, this leads to a
bigger prediction set C(Xn+1).
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Next Up

Naive approach to marginal coverage ✓

Proof of marginal coverage for full conformal prediction ✓

Split vs. full conformal prediction ✓
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Last part

1 Permutation tests & exchangeability testing.

2 Example: testing if a new data point is an outlier.

3 Conformal prediction as a permutation test.

4 Optionally: tuning based on a plug-in estimate of the error rate.

5 Can conformal predictions be overly conservative?
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Permutation tests

Often, a permutation test can be expressed as testing the null hypothesis
of exchangeability.

Exchangeability — Reminder

Let Z1, ...,Zn ∈ Z be random variables with a joint distribution. We say
that the random vector (Z1, ...,Zn) is exchangeable if

(Z1, ...,Zn)
d
=

(
Zσ(1), ...,Zσ(n)

)
∀σ ∈ Sn.

P is the set of all distributions on Zn.

Pexch ⊆ P is the subset of distributions for which exchangeability
satisfied.

(Z1, ...,Zn) ∼ P (P is some joint distribution).

Hypothesis test of

H0 : P ∈ Pexch vs. H1 : P ∈ P\Pexch.
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Exchangeability test — Procedure

Before observing the data, fix any function T : Zn → R. Intuition: a
large value of a test statistic T (Z1, ...,Zn) indicates the evidence
against exchangeability.

p =

∑
σ∈Sn I{T (Zσ(1), . . . ,Zσ(n)) ≥ T (Z1, . . . ,Zn)}

n!

Compares test statistic T of original data with all possible data
permutations.

Measures how extreme the observed statistic is under the null
hypothesis.

Statement: p is a valid p-value for a permutation test.
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Exchangeability test — Procedure

To avoid the computational burden of computing all n! permutations,
sample with replacement a smaller number of permutations uniformly
at random, to obtain the p-value

p =
1 +

∑M
m=1 I{T (Zσm(1), ...,Zσm(n)) ≥ T (Z1, ...,Zn)}

1 +M
.

The term ”1 +” makes sure the event p = 0 doesn’t have a nonzero
probability under the null hypothesis.

It’s a valid p-value.
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Example — Testing if a new data point is an outlier

Goal: test whether the last data point Zn is an outlier relative to the rest of the
sequence. Consider the test statistic:

T (z1, ..., zn) =
n∑

i=1

I{zn > zi}.

T (z1, ..., zn) captures whether Zn is more likely to be unusually large relative to the
other Zi ’s.

The permutation test p-value can be simplified because

T (Zσ(1), ...,Zσ(n)) =
n∑

i=1

I{Zσ(n) > Zσ(i)} =
n∑

i=1

I{Zσ(n) > Zi}

T (Zσ(1), ...,Zσ(n)) ≥ T (Z1, ...,Zn) ⇐⇒ Zσ(n) ≥ Zn

and so

p =

∑
σ∈Sn

I{T (Zσ(1), ...,Zσ(n)) ≥ T (Z1, ...,Zn)

n!
=

1

n!

∑
σ∈Sn

I{Zσ(n) ≥ Zn}

=
1

n!

n∑
i=1

∑
σ∈Sn,σ(n)=i

I{Zi ≥ Zn} =
1

n

n∑
i=1

I{Zi ≥ Zn}.
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Example — continuation

The last step holds true ∀i ∈ [n] since there are (n − 1)! = n!
n

permutations σ ∈ Sn for which σ(n) = i .

So,

p =

∑n
i=1 IZi≥Zn

n

is a valid p-value under the assumption that Z1, . . . ,Zn are
exchangeable, i.e., P(p ≤ τ) ≤ τ ∀τ ∈ [0, 1].
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Conformal prediction as a permutation test

Idea: conformal prediction can be viewed as a test of whether (Xn+1, y) is
an outlier to the other data points (X1,Y1), ..., (Xn,Yn).

The conformal p-value

Given training data (X1,Y1), ..., (Xn,Yn), a test feature Xn+1, and a score
function s, the conformal p-value is defined as

py =
1 +

∑n
i=1 I{S

y
i ≥ Sy

n+1}
n + 1

for each y ∈ Y, where as before,

Sy
i = s((Xi ,Yi );Dy

n+1), i ∈ [n]

Sy
n+1 = s((Xn+1, y);Dy

n+1)
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Intuition

Intuition: this p-value is asking whether the hypothesized test point
(Xn+1, y) appears to follow the same distribution as the training data
(X1,Y1), ..., (Xn,Yn) — if not, its score s((Xn+1, y);Dy

n+1) might be
substantially larger that the other scores, and consequently its p-value
py will likely be small.

Interpretation: py is a p-value of testing exchangeability of the
points (X1,Y1), ..., (Xn,Yn), (Xn+1, y).

Algorithm: we can repeat this reasoning for every possible y ∈ Y,
and collect the plausible values (i.e., y for which py is not too small)
into a prediction set.
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Conformal prediction as a permutation test

Before, we defined the full conformal prediction set C(Xn+1) as

C(Xn+1) = {y : Sy
n+1 ≤ q̂y},

where
q̂y = Quantile(Sy

1 , ...,S
y
n ; (1− α) (1 + 1/n)).

Proposition — equivalence of full conformal prediction set definitions

The full conformal prediction set satisfies

C(Xn+1) = {y ∈ Y : py > α}.

Marginal coverage guarantee of conformal prediction can be also proved using this
interpretation.

Marginal coverage guarantee of conformal prediction — Reminder

Suppose that (X1,Y1), ..., (Xn+1,Yn+1) are exchangeable and that s is a
symmetric score function. Then, the prediction set C(Xn+1) satisfies the marginal
coverage guarantee,

P(Yn+1 ∈ C(Xn+1)) ≥ 1− α.
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Marginal coverage guarantee — another proof

Denote Zi = (Xi ,Yi ), Z = X × Y.

Given any test function T : Zn+1 → R, permutation test p-value:

pperm =

∑
σ∈Sn+1

I
{
T (Zσ(1), . . . ,Zσ(n+1)) ≥ T (Z1, . . . ,Zn+1)

}
(n + 1)!

To complete the proof, we verify:

Yn+1 ∈ C(Xn+1) ⇐⇒ pperm > α

when the test function T is chosen appropriately. We set:

T (z1, . . . , zn+1) = s(zn+1; z1, . . . , zn)

By Proposition, it’s enough to show pperm = pYn+1 . Then,

T (Zσ(1), . . . ,Zσ(n+1)) = s(Zσ(n+1);Dσ
n+1) = s(Zσ(n+1);Dn+1) = Sσ(n+1)

pperm =
1

(n + 1)!

∑
σ∈Sn+1

I{Sσ(n+1) ≥ Sn+1} =
n+1∑
i=1

n!

(n + 1)!
I{Si ≥ Sn+1}

=
1 +

∑n
i=1 I{Si ≥ Sn+1}
n + 1

= pYn+1 (Si = S
Yn+1
i by def)
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Tuning Based on a Plug-in Estimate of the Error Rate

Consider prediction sets of the form

C(Xn+1;λ) = {y : s(Xn+1, y) ≤ λ},
where λ ∈ R is a parameter controlling the size of the set. Why we choose
λ = q̂ = Quantile(S1, ...,Sn; (1− α)(1 + 1/n)) for split conformal prediction?

Goal: choose threshold λ to control error rate in prediction set.

We estimate the miscoverage rate on the calibration set, where
Si = s(Xi ,Yi ):

R̂(λ) =
1

n

n∑
i=1

I{Si > λ}.

Naively choosing λ such that R̂(λ) ≤ α may not guarantee coverage (R̂(λ̂)
is a noisy estimate of this true risk).

Instead, define a more conservative threshold:

Adjusted threshold

λ̂ = inf
{
λ ∈ R : R̂(λ) ≤ α′

}
, where α′ = α− 1− α

n
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Tuning Based on a Plug-in Estimate of the Error Rate —
result

Split conformal prediction set

The split conformal prediction set C(Xn+1) satisfies

C(Xn+1) = {y ∈ Y : s(Xn+1, y) ≤ λ̂}
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Can conformal prediction be overly conservative?

We discussed that the prediction sets will cover the ground truth with at
least probability 1− α.

Issue: the sets can be unnecessarily large. How much the coverage
probability could potentially exceed the target level 1− α?

Probability upper bound

Under the conditions of Marginal coverage guarantee, we have that

P(Yn+1 ∈ C(Xn+1)) ≤
[(1− α)(n + 1)]

n + 1
+ ϵtie

≤ 1− α+
1

n + 1
+ ϵtie,

where ϵtie captures the likelihood of the score of the (n + 1)-st data point being
tied with any other data point:

ϵtie = P(∃j ∈ [n] : Sn+1 = Sj).
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Can conformal prediction be overly conservative? —
Conclusions

The coverage of conformal prediction isn’t too far from 1− α as long
as the distribution of the scores is unlikely to produce ties.
This doesn’t directly translate to a bound on the size of prediction set
C(Xn+1).
But says that this set isn’t conservative on the scale of coverage.
For example, for s((x , y);D)) = |y − f̂ (x ;D)|, a model f̂ (·;D) that is
a very poor fit to the data distribution, will necessarily lead to wide
prediction intervals. This result tells us the prediction intervals are no
wider than is needed to compensate for the errors in f̂ (·;D).

If the joint distribution of the scores is continuous

Under the conditions of Marginal coverage guarantee, further assume that
the scores S1, ...,Sn+1 have a continuous joint distribution. Then,

P(Yn+1 ∈ C(Xn+1)) ≤ 1− α+
1

n + 1
.

Kosovskaia, Gätzner, Medding (ETH Zürich) Conformal Prediction Under Exchangeability May 6, 2025 64 / 73



Thank you!
Questions or Comments?

Kosovskaia, Gätzner, Medding (ETH Zürich) Conformal Prediction Under Exchangeability May 6, 2025 65 / 73



Split Conformal Prediction, Special Case

Algorithm 2: Split conformal prediction, special case

Input : data (Xi ,Yi ) for i = 1, . . . , n with even n ≥ 2,
test point Xn+1,
target coverage level 1− α

Output: prediction interval C(Xn+1)
Partition the indices {1, . . . , n} into a training set {1, . . . , n/2} and a
calibration set {n/2 + 1, . . . , n}.;

Fit predictive model f̂ : X → R on {(Xi ,Yi ) : i = 1, . . . , n/2};
for i = n/2 + 1, . . . , n do

Si ←
∣∣Yi − f̂ (Xi )

∣∣;
Q ← sort ascending(Sn, . . .Sn/2+1);

q̂ ← Q⌈(1−α)(n/2+1)⌉;

return C(Xn+1) =
[
f̂ (Xn+1)− q̂, f̂ (Xn+1) + q̂

]
;
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Theorem (Split conformal coverage guarantee, special case)

Suppose (X1,Y1), . . . , (Xn+1,Yn+1) are i.i.d., and let C(Xn+1) be the
output of Algorithm 2. Then

P(Yn+1 ∈ C(Xn+1)) ≥ 1− α.
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Split Conformal Prediction, General Case

Algorithm 3: Split conformal prediction, general case

Input : data (Xi ,Yi ) for i = 1, . . . , n with even n ≥ 2,
test point Xn+1,
target coverage level 1− α

Output: prediction set C(Xn+1)
Partition the indices {1, . . . , n} into a training set {1, . . . , n/2} and a
calibration set {n/2 + 1, . . . , n}.;

Use the training set to construct a conformal score function
s : X × Y → R;
for i = n/2 + 1, . . . , n do

Si ← s
(
Xi , Yi

)
;

Q ← sort ascending(Sn, . . .Sn/2+1);

q̂ ← Q⌈(1−α)(n/2+1)⌉;

return C(Xn+1) =
{
y ∈ Y : s(Xn+1, y) ≤ q̂

}
;
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Theorem (Split conformal coverage guarantee, general case)

Suppose (X1,Y1), . . . , (Xn+1,Yn+1) are i.i.d., and let C(Xn+1) be the
output of Algorithm 3. Then

P(Yn+1 ∈ C(Xn+1)) ≥ 1− α.
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Symmetry of the Joint Density or PMF

Characterization (discrete case): Let Z be a countable space and
p be a joint PMF over Zn. (Z1, . . . ,Zn) is exchangeable if and only if
for all σ ∈ Sn and z1, . . . , zn ∈ Z:

p(z1, . . . , zn) = p
(
zσ(1), . . . , zσ(n)

)
.

Characterization (continuous case): Analogous. Let f be a joint
density over Rn. (Z1, . . . ,Zn) is exchangeable if and only if for all
σ ∈ Sn and almost every z1, . . . , zn ∈ Z:

f (z1, . . . , zn) = f
(
zσ(1), . . . , zσ(n)

)
.
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Conditioning on the Order Statistics

Assume real-valued RVs, i.e. Z = R and order statistics
Z(1) ≤ · · · ≤ Z(n).

If all values are distinct a.s. then every permutation is equally
likely, i.e. has occurence probability 1

n! .

Characterization: If values are not distinct a.s., then

(Z1, . . . ,Zn) | {Z(1), . . . ,Z(n)} ∼
1

n!

∑
σ∈Sn

δ(Zσ(1),...,Zσ(n)).

Sum counts the number of permutations that produce (Z1, . . . ,Zn).

Example: Unordered collection is {1, 2, 2}, then correct probabilities
are 1/3 (not 1/6) since 2 permutations can produce each possible
sequence.

Fact: P
(
Zi ≤ Z(k)

)
= k/n for each index i ∈ [n] and rank k ∈ [n].
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Conditioning on the Empirical Distribution

Define the empirical measure

P̂n =
1

n

n∑
i=1

δZi
.

Characterization: (Z1, . . . ,Zn) is exchangeable if and only if
conditional on P̂n, the variables Z1, . . . ,Zn have common distribution
P̂n, i.e. for all i ∈ [n],

Zi | P̂n ∼ P̂n.

Can be extended beyond Z = R.
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Residual Score

If we use the residual score, symmetry of s is the same as saying that
learning algorithm is invariant to the data point order as well.

Easy to see. (1) Use the definition of the residual score, (2) choose
y = f̂ (x ;D):

s((x , y);D) = s((x , y);Dσ) ∀(x , y) ∈ X × Y
(1)⇐⇒ |y − f̂ (x ;D)| = |y − f̂ (x ;Dσ)| ∀(x , y) ∈ X × Y
(2)⇐⇒ f̂ (x ;D) = f̂ (x ;Dσ) ∀x ∈ X .
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