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vi Abstract

Abstract

We develop anytime-valid methods for uncertainty quantification in tomographic imaging,
with a focus on single-photon emission tomography (SPECT). In SPECT, sequentially
acquired data is used to reconstruct images representing the radioactivity distribution
inside the object. In addition to producing image reconstructions, our approach constructs
confidence sequences: collections of confidence sets that contain the true but unknown
image with high probability simultaneously across all acquisition steps.

We investigate two variants: prior likelihood mixing and sequential likelihood mixing. Both
employ likelihood-based constructions, but differ in how they use user-defined distribu-
tions. We parameterize these distributions using classical statistical estimators (MLE,
MAP) as well as neural methods, namely U-Net ensembles and diffusion models.

In numerical experiments, we simulate SPECT data and compare the tightness and empir-
ical coverage rate of different confidence sequences. Empirically, sequential likelihood mix-
ing proves to be a particularly effective method for constructing confidence sequences. The
performance of this method depends on the image predictor used: U-Net ensembles often
yield tight and reliable confidence sets, while in some settings classical estimators (MLE,
MAP) perform best. We also present strategies for generating uncertainty visualizations.
Our results suggest that combining statistical theory with neural predictors enables prin-
cipled, real-time uncertainty quantification, which may support clinical decision-making
in SPECT and related modalities.
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Chapter 1

Introduction

Tomography is a widely used class of imaging techniques that guide critical decisions in
medicine, manufacturing, and chip metrology, for example, whether and where in the pa-
tient to perform cancer treatment (Kak and Slaney, 2001; Gerlier et al., 2022; De Chiffre
et al., 2014; Pacheco and Goyal, 2010; Bhargava et al., 2012). Such imaging techniques
recover a high-dimensional 3D volume or 2D slice from noisy lower-dimensional measure-
ments – whether that object is human tissue, an industrial part, or the layers of a microchip
(Kak and Slaney, 2001; De Chiffre et al., 2014; Brown, 2014).

Examples of tomographic imaging technologies are Positron Emission Tomography (PET)
(Sweet, 1951; Wrenn et al., 1951; Kuhl and Edwards, 1963), Single-Photon Emission Com-
puted Tomography (SPECT) (Kuhl and Edwards, 1963), Magnetic Resonance Tomogra-
phy (MRT) (Rabi, 1937; Lauterbur, 1973), X-ray Computed Tomography (CT) (Cormack,
1963; Hounsfield, 1973). In the case of PET and SPECT the reconstructed images or vol-
umes represent the activity levels of an administered radioisotope and can be used to
diagnose brain, bone, and heart diseases (Bhargava et al., 2012). Although all tomo-
graphic reconstruction techniques use noisy measurements, most, like filtered backprojec-
tion algorithm (FBP) (Bracewell and Riddle, 1967), penalized likelihood image reconstruc-
tion (Fessler and Rogers, 1996), algorithms based on expectation-maximization (Shepp and
Vardi, 1982; Hudson and Larkin, 1994), and many machine learning-based approaches (Kiss
et al., 2025) do not quantify how much we can trust reconstructions and only give a point
prediction.

Quantifying uncertainty in reconstructions instead of only giving point estimates has sev-
eral advantages: it can prevent misinterpretation of noise artifacts as real structures, re-
duce patient or component exposure by stopping acquisition once an uncertainty threshold
has been reached, optimize scanning time allocation by choosing angles that are expected
to improve reconstruction quality the most (Barba et al., 2024), and increase trust and
interpretability by giving operators visual cues about reconstruction reliability.

Before introducing the proposed constructions, it is important to clarify the mathematical
setting under which they can be applied. In particular, our confidence sequence methods
require certain structural assumptions on the data generating process. We now state these
requirements formally.

The first requirement is that we need measurable spaces (Definition A.17) (X ,FX ), (Y,FY),
and a probability space (Ω,F , P) (Definition A.19) that is composed of a sample space

1
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Ω = (X × Y)∞, σ-algebra (Definition A.5) F = (FX ⊗ FY)⊗∞, and probability measure
(Definition A.24) P on measurable space (Ω,F).

For all i ∈ N,1 define random variables (Definition A.20)

Xi : Ω→ X Xi((x1, y1), (x2, y2), . . . ) = xi

Yi : Ω→ Y Yi((x1, y1), (x2, y2), . . . ) = yi.

The second requirement is that a known parameter space Θ and θ∗ ∈ Θ exist such that for
all covariates x ∈ X a known family of conditional distributions on Y, {Pθ(· | x) : θ ∈ Θ}
with Radon-Nikodym derivative (Corollary A.48)

pθ(· | x) = dPθ(· | x)
dξ

and σ-finite measure (Definition A.26) ξ on (Y,FY), exists such that for all possible data
sequences

((x1, y1), (x2, y2), . . . ) ∈ (X × Y)∞

and all t ∈ N we have
(Yt | Xt = xt) ∼ Pθ∗(· | xt).

This requirement is called realizability (Kirschner et al., 2025). Example 1.1 shows that
realizability does not necessarily hold for all families of conditional distributions.

Example 1.1. Let x1, x2, · · · ∈ (0,∞), Θ = (0,∞) and (Yt | Xt = xt) ∼ N (0, xt). For all
covariates x ∈ (0,∞), define the family of conditional distributions on R as

Fx := {N (1, θx) : θ ∈ Θ} .

Then, no θ ∈ Θ exists such that for all t ∈ N

(Yt | Xt = xt) ∼ N (0, θxt)

since the mean of N (0, xt) is 0 and all members of Fx have mean 1. Hence, realizability
does not hold if we use Fx as our family of conditional distributions.

The last requirement is conditional independence of labels (Yi, i ∈ N) given covariates
(Xi, i ∈ N) and parameter θ ∈ Θ: for all t ∈ N, x1:t := (x1, . . . , xt) ∈ X t, all y1:t :=
(y1, . . . , yt) ∈ Yt and all θ ∈ Θ, we require that the joint density satisfies

pθ(y1:t | x1:t) =
t∏

s=1
pθ(ys | xs).

These three requirements need to be satisfied in order to construct the confidence sequences
discussed in Chapter 2. We assume that they hold for the remainder of the thesis.

1We use convention N = {1, 2, . . . } and N0 = {0, 1, . . . }.
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Experimental Setting
To demonstrate and evaluate our uncertainty quantification methods, we choose a concrete
tomography method, namely Single-Photon Emission Computed Tomography (SPECT).
At acquisition step t ∈ N, reconstruction task is to use a finite sequence of measured Pois-
son counts y1, . . . , yt ∈ Nr

0, r ∈ N to recover the (flattened) unknown activity distribution
θ∗ ∈ [0, 1]r2 that caused them. We assume a simplified 2D parallel beam geometry and
a fixed activity image resolution of 64 × 64, so r = 64 in our experiments. During each
acquisition step t ∈ N a detector measures photon counts yt ∈ N64

0 along a projection
angle xt ∈ [0, 180] (measured in degrees).

In what follows, we formalize the measurement process, describe the forward model under-
lying the data, and clarify the simplifying assumptions we adopt to focus on the uncertainty
quantification aspect of the problem.

Formally, the measurable spaces are

(X ,FX ) =
(
[0, 180],B([0, 180])

)
, (Y,FY) =

(
Nr

0,P(Nr
0)
)
,

with product sample space

Ω =
(
[0, 180]× Nr

0
)∞

, F = (FX ⊗FY)⊗∞.

We assume a fixed design of projection angles (xt, t ∈ N) ∈ [0, 180]∞, so randomness arises
only from the photon count sequence (Yt, t ∈ N).

Forward Model

For all acquisition steps t ∈ N and xt ∈ [0, 180], let Axt ∈ {0, 1}64×642 be the projection
matrix encoding which pixels contribute to which detector channels. Given the parameter
θ ∈ Θ = [0, 1]642 , the mean photon counts are

λ(θ, xt) := Axtθ ∈ [0,∞)64.

Conditional on xt, the observed photon counts follow a product-Poisson law:

(Yt | Xt = xt) ∼ Pois(λ(θ∗, xt)),

i.e., for all yt ∈ Nr
0,

pθ(yt | xt) =
642∏
i=1

exp (−λi(θ, xt))
λi(θ, xt)yt,i

yt,i!
.

Equivalently, the i-th projection entry λi(θ∗, xt) can be expressed via the discrete Radon
transform as the sum of activities along the line of response (LOR) at angle xt ∈ [0, 180]:

λi(θ∗, xt) = Ri(θ∗, xt) =
∑

(k,l)∈LOR(i,xt)
θ∗

k,l.

Thus, the matrix formulation Axtθ
∗ and the LOR-sum formulation are equivalent. Fig-

ure 1.1 illustrates projections for angles x ∈ {0, 90} along with Poisson count measure-
ments.
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Figure 1.1: Visualization of Poisson count measurements y ∼ Pois (R(θ∗, x)) of first test
set image at angles x ∈ {0, 30}.
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Remarks

This forward model is deliberately simplified. For all t ∈ N and xt ∈ [0, 180] we use
binary projection matrices Axt ∈ {0, 1}64×642 , implying that each pixel intersected by
a ray contributes equally and deterministically to the corresponding detector channel.
In realistic SPECT models, the entries of Axt take values in [0, 1], encoding detection
probabilities that depend on the scattering, attenuation, and isotropic emission of gamma
rays (Kak and Slaney, 2001). Our simplified setting is intended to isolate and evaluate
the performance of confidence sequence methods for uncertainty quantification.

Uncertainty Quantification in Tomography

Although the above forward model specifies how measurements arise from an underly-
ing image, it does not resolve the central question of how to quantify uncertainty in
the resulting reconstructions. Addressing this question has been the subject of extensive
research, and a variety of approaches have been proposed in the tomographic imaging
literature. These include analytic methods (Qi and Leahy, 2000) asymptotically valid
Bayesian methods that approximately sample the posterior (Zhou et al., 2020; Pedersen
et al., 2022; Lee et al., 2024), bootstrap methods (Dahlbom, 2001) and dropout plus en-
sembling methods (Vasconcelos et al., 2023). Some authors employ conformal prediction
to give prediction sets instead of point predictions which sidestep reliance on approxima-
tions or asymptotics and come with a theoretically guaranteed marginal coverage: for all
covariates x ∈ X , error levels δ ∈ (0, 1) and true but unknown parameters θ∗ ∈ Θ they
give a covariate dependent set C(x) ⊆ Θ for which

P(θ∗ ∈ C(x)) ≥ 1− δ

holds (Kutiel et al., 2023; Ekmekci and Cetin, 2025).

Similar to the aforementioned conformal approaches, our approach also yields sets instead
of points in image space. Concretely, we are computing confidence sequences (Darling and
Robbins, 1967).

Definition 1.2 (Confidence Sequence). Let (X ,FX ) and (Y,FY) be measurable spaces,
and let Θ be a parameter space. Let (Ω,F) be a measurable space equipped with a family
of probability measures (Pθ)θ∈Θ (Definition A.19), representing candidate data-generating
distributions under parameter θ ∈ Θ. Let true but unknown parameter θ∗ ∈ Θ.

Let I ⊆ N be a time index set, and let Z := ((Xs, Ys) : s ∈ I) be a stochastic process
(Definition A.39) on probability space (Ω,F , Pθ∗) with filtration generated by Z, F := σ(Z)
(Definition A.41).

If a sequence S = (St, t ∈ I) at level δ ∈ (0, 1) with confidence set St ⊆ Θ for all t ∈ I is
a P(Θ)-valued, F-adapted stochastic process (Definition A.39) for which

Pθ∗ (∀t ∈ I : θ∗ ∈ St) ≥ 1− δ

holds, then we call S a confidence sequence.

Let θ∗ ∈ Θ and let S = (Ss, s ∈ N) be a confidence sequence for some θ∗ at level
δ ∈ (0, 1). For all acquisition steps t ∈ N, the confidence set St depends only on data
up to (and including) the data collected at step t. Since for all t ∈ N, the confidence
sets simultaneously contain θ∗ with high probability, the confidence sequence enables us
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to make valid inferences at any time during the data acquisition process, hence they
are called anytime valid. In contrast, the marginal coverage property from conformal
prediction does not give use anytime validity, e.g. assume that for all S′

1, S′
2, · · · ⊆ Θ we

have that for all t ∈ N
P(θ∗ ∈ S′

t) ≥ 1− δ

then, without further assumptions, the Fréchet inequalities give the tightest lower bound

P(θ∗ ∈ S′
1 ∩ S′

2) ≥ max(0, 1− 2δ)

whereas if S′ = (S′
1, S′

2, . . . ) were a confidence sequence for θ∗ at level δ, we would have
the stronger guarantee

P(θ∗ ∈ S′
1 ∩ S′

2) ≥ 1− δ.

Practical Uses of Confidence Sequences

Once a confidence sequence S = (Ss, s ∈ N) has been constructed, it can be turned into
several practical tools. One possibility is to derive pixelwise uncertainty images: for all
pixels, we determine the largest and smallest intensity values that remain plausible given
the confidence set at step t ∈ N, and use their difference as a measure of uncertainty.
Another possibility is distance-based uncertainty images, where a given point estimate is
compared to the most different image still consistent with the confidence sequence. This
yields per-pixel deviation images and overall uncertainty scores that quantify how far the
reconstruction might plausibly deviate from the estimate.

Uncertainty images can also be aggregated into simple scalar summaries. For instance,
averaging per-pixel uncertainties across the whole image produces a single score that can
drive early stopping: data acquisition is terminated once the uncertainty has fallen below
a pre-specified threshold.

In Section 4.2, we discuss not only pixelwise and distance-based uncertainty images, but
also other approaches, such as global and prediction-based uncertainty images. The de-
tails of these methods, along with empirical comparisons, are presented in Sections 4.2.1
to 4.2.4. At this point, the key message is that confidence sequences not only provide
abstract coverage guarantees but can also be operationalized into concrete, task-specific
visualizations that support interpretation and decision making in tomographic imaging.

Overall, the goal of this thesis is to assess, through experiments, how confidence se-
quence approaches can provide practical and informative uncertainty quantification in
tomographic imaging.



Chapter 2

Likelihood-Based Confidence
Sequences

As discussed in Chapter 1, the central mathematical objects in our approach are confi-
dence sequences (Darling and Robbins, 1967; Robbins and Siegmund, 1970; Lai, 1976b,a).
In this chapter, we (i) motivate tight confidence sets and relate tightness to level sets of
the negative log-likelihood, (ii) present two likelihood-based constructions, prior likelihood
mixing and sequential likelihood mixing, (iii) present a Laplace’s method based approxi-
mation of prior likelihood mixing confidence sequences, (iv) discuss an equivalence result
linking the two constructions, and (v) show how sequential likelihood mixing confidence
sequences can be instantiated using mixing distributions that leverage MLE, MAP, U-Net
ensembles, and diffusion-based predictors.

2.1 Tightness and Negative Log Likelihood
We now clarify what it means for a confidence sequence S = (Ss, s ∈ N) to be informative.
Although Definition 1.2 guarantees anytime-valid coverage, it says nothing about the size
of the sets St. In addition to the anytime validity, we want St to shrink rapidly around
the true parameter θ∗ as t increases and more data are observed, rather than remaining
large and uninformative.

Let S = (Ss, s ∈ N) be a confidence sequence for θ∗ ∈ Θ. Recall that θ∗ is unknown and
we are interested in inferring it based on sequentially collected data. At step t ∈ N, it
is desirable for the confidence set St to be a small set of plausible parameters, based on
the data seen up to step t. It is important that St is small because very large Sts are
uninformative, see Example 2.1.

Example 2.1. Let θ∗ ∈ Θ and S = (Θ, Θ, . . . ). Since we assume θ∗ ∈ Θ, for any
δ ∈ (0, 1),

P(∀t ∈ N : θ∗ ∈ Θ) = 1 ≥ 1− δ,

so S is a sound confidence sequence (Definition 1.2). However, no confidence sequence
was necessary to determine that θ∗ ∈ Θ as this is already assumed true. Hence, S is not
informative.

As Example 2.1 shows, a confidence sequence is not necessarily informative. We prefer
confidence sequences that concentrate around θ∗ and do so quickly with increasing t.

7



8 Likelihood-Based Confidence Sequences

The confidence sequence constructions we consider are defined in terms of level sets of the
negative log-likelihood. Hence, we define this concept next.

Definition 2.2 (Negative Log-Likelihood). Let (X ,FX ) and (Y,FY) be measurable spaces,
and let Θ be a parameter space. Suppose that for all θ ∈ Θ and covariate x ∈ X we are
given a conditional distribution Pθ(· | x) on (Y,FY), with Radon-Nikodym derivative
pθ(· | x) with respect to some reference measure. For all t ∈ N, data sequences

((x1, y1), . . . , (xt, yt)) ∈ (X × Y)t

and parameters θ ∈ Θ, the negative log-likelihood of θ at step t is defined as

Lt(θ) := −
t∑

s=1
log pθ(ys | xs).

For all s ∈ N, θ ∈ Θ, xs ∈ X , and ys ∈ Y, we introduce the shorthand notation

ps(ys | θ) := pθ(ys | xs).

Let P(Θ) denote the space of probability measures over Θ. Moreover, for each t ∈ N and
every β ∈ R, we define the set-valued function

Ct(β) := {θ ∈ Θ | Lt(θ) ≤ β},

and refer to β as the confidence coefficient.

2.2 Prior Likelihood Mixing
In this section we define the prior likelihood mixing confidence sequence construction and
Laplace’s method-based approximations thereof. The prior likelihood mixing construction
is given by the following theorem.

Theorem 2.3 (Prior Likelihood Mixing (Kirschner et al., 2025)). For all distributions
µ0 ∈P(Θ) that are independent of the observed data sequence ((xs, ys), s ∈ N) ∈ (X×Y)∞

and all error levels δ ∈ (0, 1), (Ct(βplm
t (δ)), t ∈ N) with confidence coefficient

βplm
t (δ) = log 1

δ
− log

∫ t∏
s=1

ps(ys | ν) dµ0(ν)

defines a confidence sequence for θ∗ at level δ.

A proof of Theorem 2.3 is provided in Appendix B.2.

Theorem 2.3 leaves open a design choice, namely, prior to µ0 ∈ P(Θ). This is a critical
design choice and influences the rate at which the confidence set Ct(βplm

t (δ)) ⊆ Θ shrinks
as t ∈ N increases. We generally desire µ0 to be as concentrated around θ∗ as possible, so
a natural choice would be µ0(ν) = δθ∗(ν) where δθ∗ is the Dirac measure centered on θ∗

with the property ∫
Θ

f(ν) dδθ∗(ν) = f(θ∗)

for all continuous, compactly supported functions f . In this case, for all t ∈ N, the integral
inside βplm

t (δ) simplifies and we have

Ct(βplm
t (δ)) =

{
θ ∈ Θ | Lt(θ) ≤ log 1

δ
+ Lt(θ∗)

}
.
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Unfortunately, we cannot construct δθ∗ since θ∗ is unknown. Instead, we either construct
uninformative or data-driven priors that leverage an auxiliary dataset collected prior to
the start of the sequence.

2.2.1 Approximate Prior Likelihood Mixing

Let step t ∈ N, error level δ ∈ (0, 1) and data sequence (xs, ys)t
s=1 ∈ (X × Y)t. In

order to determine confidence coefficient βplm
t (δ) it is necessary to evaluate potentially

high-dimensional integral

∫ t∏
s=1

ps(ys | ν) dµ0(ν).

Needless to say, performing this operation exactly is intractable for most µ0 ∈ P(Θ).
Fortunately, Laplace’s Method can be used to approximate this integral (Laplace, 1878).

The multivariate version of Laplace’s method is characterized by the following theorem.

Theorem 2.4 (Laplace’s Method (Laplace, 1878)). Let f : Rd → R have two continuous
derivatives on K ⊆ Rd and let h : Rd → R be continuous. Moreover, assume that f has
a strict global minimizer x∗ ∈ K. Then gradient ∇f(x∗) = 0 and the Hessian at x∗,
∇2f(x∗), is positive semi-definite. Furthermore, assume that h(x∗) ̸= 0. Let t ∈ R. For
the integral

I(t) =
∫

K
h(x) exp(−tf(x)) dx

we have asymptotic equivalence (Definition A.2)

I(t) ∼ h(x∗)
| det∇2f(x∗)|1/2

(2π

t

)d/2
exp(−tf(x∗)).

Theorem 2.4 and its proof, given in Appendix B.1, follow the exposition in Bach (2021),
with additional details filled in where steps were omitted.

2.2.2 Application of Laplace’s Method

We use Theorem 2.3 and Theorem 2.4 to define the approximations of prior likelihood
mixing confidence sequences. For all s ∈ N and all θ ∈ Θ, assume that a density f0 of µ0
exists with respect to some appropriate base measure. Moreover, define

L+
t (ν) := Lt(ν)− log f0(ν).
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Let t ∈ N. Then, approximate − log
(∫ ∏t

s=1 ps(ys | ν) dµ0(ν)
)

via Theorem 2.4:

− log
∫ t∏

s=1
ps(ys | ν) dµ0(ν)

= − log
∫

f0(ν)
t∏

s=1
ps(ys | ν) dν

= − log
∫

exp (−(− log f0(ν) + Lt(ν))) dν

= − log
∫

exp
(
−L+

t (ν)
)

dν

≈ − log

 1∣∣∣det∇2
θL+

t (θ)|θ=θMAP
t

∣∣∣1/2 (2π)d/2 exp(−L+
t (θMAP

t )


= L+

t (θMAP
t ) + 1

2 log
∣∣∣det∇2

θL+
t (θ)|θ=θMAP

t

∣∣∣− d

2 log(2π).

This approximation yields the confidence coefficient

β̃t(δ) := log 1
δ

+ L+
t (θMAP

t ) + 1
2 log

∣∣∣det∇2
θL+

t (θ)|θ=θMAP
t

∣∣∣− d

2 log(2π),

approximate confidence set Ct(β̃t(δ)) and approximate confidence sequence

S̃ := (Cs(β̃s(δ), s ∈ N).

Using Ct(β̃t(δ)) in favor of Ct(βt(δ)) avoids having to compute a high-dimensional integral.
However, since S̃ is only an approximation of (Ct(βplm

t (δ)), t ∈ N) so

P(∀t ∈ N : θ∗ ∈ Ct(β̃t(δ))) ≥ 1− δ

is not guaranteed. In fact, empirical results in Section 4.1.4 indicate that

P(∀t ∈ N : θ∗ ∈ Ct(β̃t(δ))) < 1− δ

in many settings.

Next, we analyze a powerful alternative confidence sequence construction that exploits
predictive models in order to construct tight confidence coefficients.

2.3 Sequential Likelihood Mixing
The sequential likelihood mixing construction is defined by the following theorem.

Theorem 2.5 (Sequential Likelihood Mixing (Kirschner et al., 2025)). Let F ′ = (F ′
s)s∈N0

be a filtration (Definition A.40) of the underlying probability space. For all t ∈ N, let

F ′
t = σ ((Xs, Ys), s ∈ [t]) (Definition A.23)

and F ′
0 = {∅, Ω}. Let the sequence of mixing distributions (µs, s ∈ N0) be a P(Θ)-

valued F ′-adapted stochastic process (Definition A.41). For all t ∈ N and all error levels
δ ∈ (0, 1), define sequential likelihood mixing confidence coefficient

βslm
t (δ) = log 1

δ
−

t∑
s=1

log
∫

ps(ys | ν) dµs−1(ν).

Then (Ct(βslm
t (δ)), t ∈ N) is a confidence sequence at level δ.
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A proof of this theorem can be found in Appendix B.3.

Interestingly, the sequential likelihood mixing (Theorem 2.5) and prior likelihood mixing
(Theorem 2.3) constructions are equivalent for specific choices of mixing distributions.
Theorem 2.6 formalizes this statement.

Theorem 2.6 (Mixing Equivalence (Kirschner et al., 2025)). Let F ′ = (F ′
s)s∈N0 be a

filtration (Definition A.40) of the underlying probability space. For all t ∈ N, let

F ′
t = σ ((Xs, Ys), s ∈ [t]) (Definition A.23)

and F ′
0 = {∅, Ω}. Let the sequence of distributions (µs, s ∈ N0) be a P(Θ)-valued F ′-

adapted stochastic process (Definition A.41) with

µs(A) ∝
∫

A
exp(−Ls(θ)) dµ0(θ).

for all s ∈ N0 and A ∈ F ′
s. If for all t ∈ N and all error levels δ ∈ (0, 1), we construct

βslm
t (δ) using µ0, . . . , µt, and βplm

t (δ) using µ0, then βplm
t (δ) = βslm

t (δ).

A proof of this statement can be found in Appendix B.4.

2.3.1 Mixing Distributions

For all error levels δ ∈ (0, 1), all t ∈ N and mixing distributions ((µ0, µ1, · · · ∈P(Θ) that
match the conditions in Theorem 2.5,

βslm
t (δ) = − log 1

δ
−

t∑
s=1

log
∫

ps(ys | ν) dµs−1(ν).

For all s ∈ N, define
bslm

s := − log
∫

ps(ys | ν) dµs−1(ν).

Then, for all t ∈ N

βslm
t (δ) = log 1

δ
+

t∑
s=1

bslm
s .

For all s ∈ N, bslm
s can be interpreted as measuring how surprising observation (ys, xs) is

under µs−1. The more surprising (ys, xs) is under µs−1 the larger bslm
s .

Compared to prior µ0, which has to be independent of all data in the sequence, for all µt

with t ∈ N can depend on ((xs, ys), s ∈ [t]). In this work, we specialize µt as a uniform
mixture of k ∈ N Dirac distributions: For all t, choose

µt = 1
k

k∑
i=1

δθ̂t,i

centered on predictions θ̂t,1, . . . , θ̂t,k ∈ Θ of θ∗ based on observed data ((xs, ys), s ∈ [t]).
Then

βslm
t (δ) = log 1

δ
−

t∑
s=1

log
(

1
k

k∑
i=1

ps(ys | θ̂s,i)
)

(2.1)

= log 1
δ

+ t log k −
t∑

s=1
LSE(log ps(ys, θ̂s,1), . . . , log ps(ys, θ̂s,k)) (2.2)
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where LSE denotes the log-sum-exp function:

LSE(z1, . . . , zk) := z∗ + log(exp(z1 − z∗) + · · ·+ exp(zk − z∗))

and z∗ = max(z1, . . . , zk). In our experiments, we use Equation (2.2) in favor of Equa-
tion (2.1) because it is more numerically stable.

We also investigate pre-processing θ̂t,1, . . . , θ̂t,k ∈ Θ first by applying an aggregation map
A : Θk → Θ to them and then setting

µs = δθ̂s
, θ̂s = A(θ̂s,1, . . . , θ̂s,k).

For example, one may take the coordinate median or average as A. This yields confidence
coefficient

βslm
t (δ) = log 1

δ
−

t∑
s=1

log ps(ys | θ̂s).

Such an approach can mitigate the effect of individual predictors that assign very low
likelihood to (xs, ys), potentially leading to a more stable confidence sequence.

We generate predictions θ̂s,1, . . . , θ̂s,k with four different methods, Maximum Likelihood
Estimation (MLE), Maximum A Posteriori Estimation (MAP), U-Net Ensembling, Diffu-
sion. The first two are classical statistical estimators. MLE relies solely on the observed
data, while MAP incorporates both data and prior information. The latter two are neu-
ral methods: U-Net ensembles provide image-to-image mappings, while diffusion models
enable flexible generative sampling.

• Maximum Likelihood Estimation (MLE): We set k = 1 and define µs = δ
θ̂

MLE
s

with θ̂
MLE
s an approximate maximum likelihood estimate based on the data up to

step s. Details about how we compute θ̂
MLE
s are provided in Section 4.1.3.

• Maximum A Posteriori Estimation (MAP): Similarly, we set k = 1 and define
µs = δ

θ̂
MAP
s

with θ̂
MAP
s an approximate MAP estimate that incorporates both data

and prior information. See Section 4.1.3 for the exact optimization formulation.

• U-Net Ensemble: Let k ∈ N represent the number of ensemble members. Each
member is a U-Net (Ronneberger et al., 2015) and maps FBP reconstructions to
the final prediction (Hansen and Salamon, 1990; Jin et al., 2017). For all t ∈ N,
let θ̂t,1, . . . , θ̂t,k ∈ Θ be predictions from k different U-Net ensemble members where
each mapped the same FBP (based on data sequence (x1, y1), . . . , (xt, yt)) to its
respective prediction. Then for experiments using this method we choose µt =
1
k

∑k
i=1 δθ̂t,i

.

• Diffusion: In this approach, let k ∈ N correspond to the number of samples we
generate. We assume the existence of an underlying distribution P (θ) on the pa-
rameter space Θ, representing the population distribution of parameters, and first
train an unconditional diffusion model (Ho et al., 2020) to approximate it. With-
out further modification, the model then allows us to approximately draw samples
from P (θ). However, these samples may be inconsistent with the observed data
sequence. Instead, to construct µt with t ∈ N, we generate samples θ̂t,1, . . . , θ̂t,k ∈ Θ
that are consistent with the observed data sequence (x1, y1), . . . , (xt, yt) ∈ X × Y
by interleaving gradient descent steps on the objective Lt with ordinary diffusion
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denoising steps (Barba et al., 2024). Then for all t ∈ N, the experiments choose
µt = 1

k

∑k
i=1 δθ̂t,i

.

For all methods except diffusion, we construct µ0 as a Gaussian distribution based on an
empirical dataset of n ∈ N parameters {θ(j), j ∈ [n]} ⊆ Θ. Specifically, we set

µ0 = N
(
θ̄, diag(s2

1, . . . , s2
d)
)

,

where d ∈ N is the dimension of the parameter space, θ̄ denotes the sample mean, and
s2

i is the sample variance of the i-th coordinate of the dataset. In experiments involving
diffusion-based predictions, we instead set

µ0 = 1
k

k∑
i=1

δθ̂0,i
,

where θ̂0,1, . . . , θ̂0,k are unconditional samples drawn from the diffusion model. Details
about the experimental setup are provided in later sections.

2.4 Delayed Construction with Data Splitting and Burn-in
Having introduced prior and sequential likelihood mixing and their dependence on the
chosen prior and mixing distributions, we now study a refinement to improve tightness:
delaying the start of the confidence sequence by using an initial burn-in phase based on
data splitting. Let t ∈ N be the total number of observations, t0 ∈ [t] be a chosen starting
time, and the observations be

(x′
1, y′

1), . . . , (x′
t, y′

t) ∈ X × Y.

For all s ∈ {1, . . . , t− t0 + 1}, define

xs := x′
t0−1+s, ys = y′

t0−1+s.

Then use burn-in data

Dburn-in := (x′
1, y′

1), . . . , (x′
t0−1, y′

t0−1)

to construct prior or mixing distributions, in Theorems 2.3 and 2.5 respectively, that are
more concentrated around θ∗ and use the remaining data

(x1, y1), . . . , (xt−t0+1, yt−t0+1)

to constrain the confidence set through negative log-likelihood Lt−t0+1.

To apply prior likelihood mixing, we may construct prior µ0 using Dburn-in. To apply
sequential likelihood mixing, for all s ∈ {1, . . . , t− t0 + 1}, we may use

(x′
1, y′

1), . . . , (xt0+s−1, yt0+s−1)

to construct µs.

Choosing a larger t0 has the beneficial effect that we can condition prior and mixing
distributions on more data, but also has the negative effect that we have less data to
constrain Ct−t0+1(·) through Lt−t0+1, so it is not obvious which choice of t0 is optimal.
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A guaranteed disadvantage of larger t0 is that we have to wait until the data sequence
(x′

1, y′
1), . . . , (x′

t0 , y′
t0) has been observed before the first confidence set can be constructed.

Our experiments suggest that the optimal choice of t0 to obtain the tightest confidence
set depends not only on t, but also on experimental conditions such as acquisition time
Ta ∈ (0,∞). Chapter 4 goes into more detail about that.

This concludes our discussion of likelihood-based confidence sequences. We now turn to a
detailed account of the neural methods, including their motivation, training, and use for
generating predictions.



Chapter 3

Neural Methods

In the Chapter 2, we introduced likelihood-based confidence sequences, discussed their role
in uncertainty quantification, and presented two general constructions: prior likelihood
mixing in Section 2.2 and sequential likelihood mixing in Theorem 2.5. Both approaches
require prior distributions, and in the sequential case a sequence of mixing distributions.
The tightness of the resulting confidence sets, measured by the size of the confidence
coefficient, depends critically on how strongly these distributions concentrate around the
true parameter θ∗ ∈ Θ.

Neural predictors can be used to construct such distributions. For all steps t ∈ N, predic-
tors produce candidate estimates

θ̂t,1, . . . , θ̂t,k ∈ Θ,

based on data (x1, y1), . . . , (xt, yt), which, if close to θ∗ in a distance measure such as

d2(θ1, θ2) := ∥θ1 − θ2∥2,

can be used to form concentrated distributions, for instance,

µt = 1
k

k∑
i=1

δθ̂t,i
or µt = δθ̂t

,

where θ̂t = median(θ̂t,1, . . . , θ̂t,k) is the coordinate-wise median.

In tomographic imaging, two neural approaches are particularly prominent: deterministic
U-Nets that map filtered backprojections directly to ground truth images (Ronneberger
et al., 2015; Jin et al., 2017; Kang et al., 2017; Han and Ye, 2018), and guided diffusion
models that generate conditional samples from learned image distributions (Ho et al.,
2020; Dhariwal and Nichol, 2021; Nichol et al., 2022). Both approaches have been shown
to work well for the reconstruction and synthesis of medical images (Kiss et al., 2025; Yang
et al., 2023), and we use them as predictors in our confidence sequence constructions.

Since both U-Nets and image-generating diffusion models output images, we assume
throughout this chapter that the parameter space is an image domain Θ ⊆ RC×W ×H .

15



16 Neural Methods

3.1 U-Nets
U-Nets are encoder–decoder architectures with skip connections, originally introduced for
biomedical image segmentation (Ronneberger et al., 2015). Since then, they have become
a standard tool for image-to-image regression, denoising, and inverse problems such as
tomography (Jin et al., 2017; Kang et al., 2017; Han and Ye, 2018). Their strength lies in
combining global contextual information with local spatial detail through the interaction
of the contracting path and skip connections.

3.1.1 General Structure

The contracting path (or encoder) consists of repeated downsampling and feature extrac-
tion steps. Each stage reduces spatial resolution while increasing the number of channels,
yielding progressively more abstract features. The final output of the encoder has size
Cmax ×Wmin ×Hmin with Wmin ≪ W , Hmin ≪ H, and Cmax ≫ C. This latent represen-
tation constitutes the bottleneck and encodes the global context extracted from the input
image.

The expanding path (or decoder) then increases the spatial resolution step by step using
upsampling operations (e.g., transposed convolutions or interpolation) followed by fea-
ture transformations that preserve spatial dimensions. Skip connections link encoder and
decoder stages at matching resolutions, allowing the decoder to reuse fine-grained spa-
tial information discarded during downsampling and thereby improve detail reconstruc-
tion (Ronneberger et al., 2015). Figure 3.1 illustrates the general structure.

DownBlock

DownBlock

DownBlock

MidBlock

UpBlock

UpBlock

UpBlock

PostProcessingPreProcessingInput
Image

Predicted
Image

Extra
Information

Figure 3.1: General structure of a U-Net. Green shapes denote inputs and outputs. Blue
blocks form the contracting path (encoder), yellow blocks the expanding path (decoder).
Additional information, if available, may be routed into the network, represented here by
the Extra Information oval.

Numerous variants of the U-Net architecture have been proposed. Residual U-Nets in-
corporate residual connections to improve gradient flow and training stability (Drozdzal
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et al., 2016; Khanna et al., 2020). Attention U-Nets augment skip connections with atten-
tion gates that selectively pass information from the encoder (Oktay et al., 2022). More
recently introduced Transformer–U-Net hybrids integrate transformer blocks into the bot-
tleneck to capture long-range dependencies and improve contextual reasoning (Vaswani
et al., 2017; Chen et al., 2021, 2024).

In this work, we employ a Transformer–U-Net hybrid as a post-processing U-Net (Kiss
et al., 2025). The precise architecture is detailed in Chapter 4.

3.1.2 Training

Although many loss functions and training strategies exist in practice, we summarize the
standard training pipeline here.

1. Collect a dataset of input image, target image, extra information tuples, e.g. (noisy
image, noiseless image, class of the image).

2. Optionally increase dataset size via data augmentation

3. For Nepochs ∈ N epochs iterate over each batch of examples. For each batch do:

(a) Predict the target image based on the input image and auxiliary information
(if available).

(b) Compute a loss, e.g. MSE over all pixels and (predicted image, target image)
pairs in the batch.

(c) Backpropagate the loss to get the gradient w.r.t the networks parameters.

(d) Update network parameters.

(e) If a stopping criterion (e.g., patience based) is satisfied, stop training

.

In our case, we train U-Nets by minimizing the MSE between predictions and ground-truth
noiseless activity images. As mentioned earlier, the input images are FBP reconstructions
and the only auxiliary information provided is a time step. Chapter 4 covers the exact
training procedure.

Although U-Nets provide deterministic image-to-image mappings, diffusion models allow
stochastic but steerable image generation. We describe these in the next section.

3.2 Diffusion Models

Diffusion models are a powerful family of deep generative models that generate samples
by reversing a noising process (Sohl-Dickstein et al., 2015; Ho et al., 2020). They have
recently achieved state-of-the-art (SOTA) performance in including image and audio gen-
eration (Nichol and Dhariwal, 2021; Rombach et al., 2022; Esser et al., 2024; Fuest et al.,
2024). They furthermore show competitive or SOTA performance on various natural lan-
guage modeling benchmarks (Fuest et al., 2024; Li et al., 2025). Intuitively, what they
do is denoise corrupted (or noisy) data sequentially until the clean, noiseless signal is
recovered.
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As mentioned earlier, in this work we use Denoising Diffusion Probabilistic Models (DDPM)
from (Ho et al., 2020) to implement an unconditional image distribution sampler. We next
describe DDPM.

3.2.1 Roadmap

Our goal is to generate samples from the target image distribution Q0 on Θ, with density
q0. Let ϑ(0) ∼ Q0 denote the corresponding random variable, and let θ(0) ∈ Θ denote an
observation. Since Q0 is unknown, we approximate it by learning a joint distribution Pϕ

with density pϕ over length T + 1 ∈ {2, 3, . . . } sequences of random variables

ϑ(0:T ) := (ϑ(0), ϑ(1), . . . , ϑ(T )),

where ϑ(0) corresponds to an image and ϑ(1:T ) are auxiliary latent variables. Sampling
from pϕ then produces realizations θ(0:T ) = (θ(0), . . . , θ(T )) ∈ ΘT +1, and retaining only
θ(0) yields an unconditional image sample from (approximately) Q0.

In our experiments, we further guide the sampling procedure to enforce consistency with
the observed data sequence and thereby obtain predictions for θ∗. Details of this guided
sampling approach are deferred to Section 4.1.2.

3.2.2 Forward Process

The forward process is the distribution Q on ΘT +1 with density q. For all T ∈ N,
θ(1:T ) ∈ ΘT and θ(0) ∈ Θ the conditional density at θ(1:T ) given θ(0) is defined
such that it factorizes as a Gaussian Markov chain:

q(θ(1:T ) | θ(0)) :=
T∏

τ=1
q(θ(τ) | θ(τ−1)),

with
q(θ(τ) | θ(τ−1)) := N

(
θ(τ);

√
1− βτ θ(τ−1), βτ I

)
.

Note that the expression q(θ(τ) | θ(τ−1)) should be understood as a shorthand: while the
functional form is Gaussian for all τ ∈ [T ], the parameters (

√
1− βτ , βτ ) depend explicitly

on τ , so each conditional density is in general different.

The variance schedule (β1, . . . , βT ) ∈ (0,∞)T is typically chosen to increase linearly: for
all τ ∈ [T ],

βτ = τ − 1
T − 1βT +

(
1− τ − 1

T − 1

)
β1,

although improved schedules (e.g. cosine) were later introduced (Ho et al., 2020; Nichol
and Dhariwal, 2021). The variances β1, βT ∈ (0,∞) are treated as hyperparameters.

3.2.3 Reverse Process

The learned reverse process is the distribution Pϕ on ΘT +1 with density pϕ. It is defined
as a Gaussian Markov chain whose mean function µϕ : Θ× [T ] → Θ is parameterized by
a U-Net. For all T ∈ N, τ ∈ [T ] and θ(0), . . . , θ(T ) ∈ Θ they it is defined as

pϕ(θ(0:T )) := p(θ(T ))
T∏

τ=1
pϕ(θ(τ−1) | θ(τ)),



3.2 Diffusion Models 19

with conditional transitions

pϕ(θ(τ−1) | θ(τ)) := N
(
θ(τ−1); µϕ(θ(τ), τ), σ2

τ I
)
,

and prior

p(θ(T )) := N (θ(T ); 0, I).

As in the forward process Markov chain, for all τ ∈ [T ], the shorthand pϕ(θ(τ−1) | θ(τ))
denotes a Gaussian conditional density whose parameters depend on the time index τ
through µϕ(·, τ) and σ2

τ . Here, ϕ ∈ Rdlearn with dlearn ∈ N are learnable parameters. The
reverse process variances σ2

τ are tied to the forward process schedule βτ . For all τ ∈ [T ],
two choices are commonly used:

σ2
τ = βτ or σ2

τ = 1− ᾱτ−1
1− ᾱτ

βτ ,

with ᾱτ := ∏τ
s=1 αs and ατ := 1− βτ . Empirically, this choice has only a minor effect on

performance (Ho et al., 2020).

3.2.4 Training Objective

We aim to minimize the expected negative log-likelihood Eϑ(0) [− log pϕ(ϑ(0))]. In the
following, we re-derive the simplified training objective in (Ho et al., 2020).

Let θ(0) ∈ Θ and T ∈ N. Then

pϕ(θ(0)) = Eϑ(1:T )

[
pϕ(θ(0), ϑ(1:T ))
q(ϑ(1:T ) | θ(0))

∣∣∣∣∣ϑ(0) = θ(0)
]

.

Jensen’s inequality and convexity of − log imply that

− log pϕ(θ(0))

≤ Eϑ(1:T )

[
− log pϕ(θ(0), ϑ(1:T ))

q(ϑ(1:T ) | θ(0))

∣∣∣∣∣ϑ0) = θ(0)
]

(3.1)

= Eϑ(1:T )

[
− log p(ϑ(T ))−

T∑
τ=2

log pϕ(ϑ(τ−1) | ϑ(τ))
q(ϑ(τ) | ϑ(τ−1))

− pϕ(θ(0) | ϑ(1))
q(ϑ(1) | θ(0))

∣∣∣∣∣ϑ(0) = θ(0)
]

=: L.

For all θ(0), . . . , θ(T ) ∈ Θ, define q(θ(0:T )) := q(θ(0)) q(θ(1:T ) | θ(0)), then taking an expec-
tation over ϑ(0) on both sides of Equation (3.1) yields the variational upper bound

Eϑ(0)
[
− log pϕ(ϑ(0))

]
≤ Eϑ(0:T )

[
− log pϕ(ϑ(0:T ))

q(ϑ(1:T ) | ϑ(0))

]
.
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Next, rewrite L as (Ho et al., 2020; Sohl-Dickstein et al., 2015):

L = Eϑ(0:T )

[
− log p(ϑ(T ))−

T∑
τ=2

log pϕ(ϑ(τ−1) | ϑ(τ))
q(ϑ(τ) | ϑ(τ−1))

− log pϕ(ϑ(0) | ϑ(1))
q(ϑ(1) | ϑ(0))

]

= Eϑ(0:T )

[
− log p(ϑ(T ))−

T∑
τ=2

log pϕ(ϑ(τ−1) | ϑ(τ))
q(ϑ(τ−1) | ϑ(τ), ϑ(0))

−
T∑

τ=2
log q(ϑ(τ) | ϑ(0))

q(ϑ(τ−1) | ϑ(0))
− log pϕ(ϑ(0) | ϑ(1))

q(ϑ(1) | ϑ(0))

]

= Eϑ(0:T )

[
− log p(ϑ(T ))

q(ϑ(T ) | ϑ(0))

−
T∑

τ=2
log pϕ(ϑ(τ−1) | ϑ(τ))

q(ϑ(τ−1) | ϑ(τ), ϑ(0))
− log pϕ(ϑ(0) | ϑ(1))

]

= Eϑ(0:T )

[
DKL

(
q(ϑ(T ) | ϑ(0)) ∥ p(ϑ(T ))

)
+

T∑
τ=2

DKL
(
q(ϑ(τ−1) | ϑ(τ), ϑ(0)) ∥ pϕ(ϑ(τ−1) | ϑ(τ))

)
− log pϕ(ϑ(0) | ϑ(1))

]

= Eϑ(0:T )

[
LT +

T∑
τ=2
Lτ−1 − L0

]

with for all τ ∈ {2, . . . , T}

LT := Eϑ(0),ϑ(T )

[
DKL

(
q(ϑ(T ) | ϑ(0)) ∥ p(ϑ(T ))

)]
Lτ−1 := Eϑ(0),ϑ(τ−1),ϑ(τ)

[
DKL

(
q(ϑ(τ−1) | ϑ(τ), ϑ(0)) ∥ pϕ(ϑ(τ−1) | ϑ(τ))

)]
L0 := Eϑ(0),ϑ(1)

[
− log pϕ(ϑ(0) | ϑ(1))

]
.

Since LT does not involve learnable parameters, it can be ignored. For simplicity, we also
ignore L0, although it involves learnable parameters.

Next, we derive the simplified version of Lτ−1, following the steps in (Zhang, 2025).The
derivation has been adapted to align with our notation and to explicitly distinguish be-
tween random variables and deterministic quantities, with the aim of improving clarity.
The first step is to show Lemma 3.1 and then use it to show Lemma 3.2.

Lemma 3.1. For all τ ∈ {2, . . . , T} and all θ(τ), θ(τ−1) ∈ Θ we have

q(θ(τ) | θ(0)) = N
(
θ(τ);

√
ᾱτ θ(0), (1− ᾱτ )I

)
.

with ατ = 1− βτ and ᾱτ = ∏τ
s=1 αs.

Proof. See Appendix B.5.

Lemma 3.2. For all τ ∈ {2, . . . , T} and θ(τ), θ(τ−1), θ(0) ∈ Θ

q(θ(τ−1) | θ(τ), θ(0)) = N (θ(τ−1); µ̃τ (θ(τ), θ(0)), β̃τ I)
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with

µ̃τ (θ(τ), θ(0)) =
√

ᾱτ−1βτ

1− ᾱτ
θ(0) +

√
ατ (1− ᾱτ−1)

1− ᾱτ
θ(τ),

β̃τ = 1− ᾱτ−1
1− ᾱτ

βτ .

Proof. See Appendix B.6. The claim is proven using Lemma 3.1.

Motivated by Lemma 3.2 we choose σ2
τ = β̃τ . The next lemma significantly simplifies Lτ−1.

Lemma 3.3. For τ ∈ {2, . . . , T}

Lτ−1 = 1
2σ2

τ

Eϑ(0),ϑ(τ)

[
∥µϕ(ϑ(τ), τ)− µ̃τ (ϑ(τ), ϑ(0))∥2

]
+ C,

where C is a constant independent of ϕ.

Proof. See Appendix B.7. The claim is proven using Lemma 3.2.

For all τ ∈ [T ], define

ϑ(τ)(ϑ(0), ϵ) :=
√

ᾱτ ϑ(0) +
√

1− ᾱτ ϵ

with ϵ ∼ N (0, I). Then, Lemma 3.1 implies

ϑ(τ)(ϑ(0), ϵ) = ϑ(τ). (3.2)

Rearranging yields

ϑ(0) = 1√
ᾱτ

(ϑ(τ)(ϑ(0), ϵ)−
√

1− ᾱτ ϵ) (3.3)

Plugging Equations (3.2) and (3.3) into the equation in Lemma 3.3 and using the definition
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of µ̃τ yields

Lτ−1 ∝ Eϑ(0),ϵ

[
1

2σ2
τ

∥∥∥∥∥µϕ

(
ϑ(τ)(ϑ(0), ϵ), τ

)

− µ̃τ

(
ϑ(τ)(ϑ(0), ϵ), 1√

ᾱτ
(ϑ(τ)(ϑ(0), ϵ)−

√
1− ᾱτ ϵ)

)∥∥∥∥∥
2]

= Eϑ(0),ϵ

[
1

2σ2
τ

∥∥∥∥∥µϕ

(
ϑ(τ)(ϑ(0), ϵ), τ

)

−
√

ᾱτ−1βτ

1− ᾱτ

1√
ᾱτ

(ϑ(τ)(ϑ(0), ϵ)−
√

1− ᾱτ ϵ)−
√

ατ (1− ᾱτ−1)
1− ᾱτ

ϑ(τ)(ϑ(0), ϵ)
∥∥∥∥∥

2]

= Eϑ(0),ϵ

[
1

2σ2
τ

∥∥∥∥∥µϕ

(
ϑ(τ)(ϑ(0), ϵ), τ

)

− 1
1− ᾱτ

(
βτ√
ατ

(
ϑ(τ)(ϑ(0), ϵ)−

√
1− ᾱτ ϵ

)
+√ατ (1− ᾱτ−1)ϑ(τ)(ϑ(0), ϵ)

)∥∥∥∥∥
2]

= Eϑ(0),ϵ

[
1

2σ2
τ

∥∥∥∥∥µϕ

(
ϑ(τ)(ϑ(0), ϵ), τ

)

− 1
1− ᾱτ

(( βτ√
ατ

+√ατ (1− ᾱτ−1)
)
ϑ(τ)(ϑ(0), ϵ)− βτ√

ατ

√
1− ᾱτ ϵ

)∥∥∥∥∥
2]

= Eϑ(0),ϵ

[
1

2σ2
τ

∥∥∥∥∥µϕ

(
ϑ(τ)(ϑ(0), ϵ), τ

)
−
(

1
√

ατ
ϑ(τ)(ϑ(0), ϵ)− βτ√

ατ
·
√

1− ᾱτ

1− ᾱτ
ϵ

)∥∥∥∥∥
2]

= Eϑ(0),ϵ

[
1

2σ2
τ

∥∥∥∥∥µϕ

(
ϑ(τ)(ϑ(0), ϵ), τ

)
− 1
√

ατ

(
ϑ(τ)(ϑ(0), ϵ)− βτ√

1− ᾱτ
ϵ

)∥∥∥∥∥
2]

.

Let θ(0) ∈ Θ, τ ∈ {2, . . . , T} and ϵ ∼ N (0, I). The last equation implies that

µϕ(ϑ(τ)(θ(0), ϵ), τ)

should, in expectation, be close to

1
√

ατ

(
ϑ(τ)(θ(0), ϵ)− βτ√

1− ᾱτ
ϵ

)
in order to minimize Lτ−1. At the τ -th reverse step the only unknown in it is ϵ, we may
instead train our model to predict ϵ based on (θ(τ), τ). To that end, for all τ ∈ [T ] and
θ(τ) ∈ Θ define

µϕ(θ(τ), τ) := 1
√

ατ

(
θ(τ) − βτ√

1− ᾱτ
ϵϕ(θ(τ), τ)

)
(3.4)

where ϵϕ is the trainable model that predicts ϵ from (θ(τ), τ). During inference time, to
sample θ(τ−1) ∼ pϕ(θ(τ−1) | θ(τ)) with τ ∈ [T − 1] we sample z ∼ N (0, I) and set

θ(τ−1) = 1
√

ατ

(
θ(τ) − βτ√

1− ᾱτ
ϵϕ(θ(τ), τ)

)
+ στ z.
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Remember that for all τ ∈ {2, . . . , T}

Lτ−1 ∝ Eϑ(0), ϵ

[
1

2σ2
τ

∥∥∥µϕ(ϑ(τ)(ϑ(0), ϵ), τ)− 1
√

ατ

(
ϑ(τ)(ϑ(0), ϵ)− βτ√

1− ᾱτ
ϵ
)∥∥∥2

]
.

Now, consider the inner difference. Plugging in Equation (3.4) and simplifying it yields

µϕ(ϑ(τ)(ϑ(τ−1), ϵ), τ)− 1
√

ατ

(
ϑ(τ)(ϑ(τ−1), ϵ)− βτ√

1− ᾱτ
ϵ

)
= 1
√

ατ

(
ϑ(τ)(ϑ(τ−1), ϵ)− βτ√

1− ᾱτ
ϵϕ

)
− 1
√

ατ

(
ϑ(τ)(ϑ(τ−1), ϵ)− βτ√

1− ᾱτ
ϵ

)
= βτ√

ατ
√

1− ᾱτ

(
ϵϕ(ϑ(τ)(ϑ(τ−1), ϵ), τ)− ϵ

)
.

Therefore, ∥∥∥µϕ(ϑ(τ)(ϑ(0), ϵ), τ)− 1
√

ατ

(
ϑ(τ)(ϑ(0), ϵ)− βτ√

1− ᾱτ
ϵ
)∥∥∥2

= β2
τ

ατ (1− ᾱτ )
∥∥ϵϕ(ϑ(τ)(ϑ(0), ϵ), τ)− ϵ

∥∥2
. (3.5)

Since σ2
τ = β̃τ = 1−ᾱτ−1

1−ᾱτ
βτ , we have

β2
τ

2 σ2
τ ατ (1− ᾱτ ) = βτ

2 ατ (1− ᾱτ−1) . (3.6)

Substituting Equation (3.5) into Lτ−1 and applying Equation (3.6) yields

Lτ−1 ∝ Eϑ(0), ϵ

[
β2

τ

2 σ2
τ ατ (1− ᾱτ )

∥∥ϵϕ(ϑ(τ)(ϑ(0), ϵ), τ)− ϵ
∥∥2
]

.

Dropping the scalar weighting factor as in (Ho et al., 2020) and training with the simplified
objective

Lsimple = Eϑ(0), ϵ

[∥∥ϵϕ

(
ϑ(τ)(ϑ(0), ϵ), τ

)
− ϵ
∥∥2]

works empirically. In our implementation, we use Lsimple for training.

3.2.5 Training and Unconditional Sampling Algorithms

Algorithms 1 and 2 show the unconditional DDPM training and sampling procedures,
respectively (Zhang, 2025).
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Algorithm 1 Unconditional Training
1: repeat
2: Sample θ(0) ∈ Θ from dataset D
3: Sample τ ∼ Uniform({1, . . . , T})
4: Sample ϵ ∼ N (0, I)
5: Take a gradient descent step on

∇ϕ

∥∥∥ϵϕ

(√
ᾱτ θ(0) +

√
1− ᾱτ ϵ, τ

)
− ϵ
∥∥∥2

6: until converged

Algorithm 2 Unconditional Sampling
1: Sample θ(T ) ∼ N (0, I)
2: for τ ← T, . . . , 1 do
3: Sample z ∼ N (0, I) if τ > 1, else set z ← 0
4: Update

θ(τ−1) ← 1
√

ατ

(
θ(τ) − βτ√

1− ᾱτ
ϵϕ(θ(τ), τ)

)
+ στ z

5: end for
6: return θ(0)



Chapter 4

Experiments

In our experiments, we address three central questions.

1. Which confidence sequences yield the tightest confidence sets?

2. What is their empirical coverage rate, i.e. how often does the true parameter lie
within all confidence sets of the sequence?

3. How can we visualize uncertainty?

We start our discussion by describing how we specialize prior likelihood mixing (Theo-
rem 2.3) and sequential likelihood mixing (Theorem 2.5) for evaluation.

4.1 Comparison of Confidence Sequences

The first set of experiments investigates which confidence sequence constructions yield
the tightest confidence sets. Since tight confidence sets correspond to low confidence
coefficients, we compare the confidence coefficients of the considered constructions for
different acquisition times Ta ∈ (0,∞).

For prior likelihood mixing, we consider both exact and approximate specializations. The
approximate ones rely on the Laplace method (Theorem 2.4) to approximate the integral in
Theorem 2.3, with priors given by the standard normal distribution or a learned diagonal
normal distribution. The exact ones use Dirac deltas or mixtures thereof, each centered
on predictions from a guided diffusion model or a U-Net ensemble member.

For sequential likelihood mixing, we restrict our attention to exact specializations. Again,
the mixing distributions are Dirac deltas or mixtures thereof, centered on diffusion model
or U-Net predictions. Table 4.1 provides an overview of all prior and mixing distributions
used in the experiments.

We vary two experimental factors: the acquisition time per angle and the starting time of
the confidence sequence (see Section 2.4). In SPECT, a rotating gamma camera head (de-
tector head) collects photon counts in step-and-shoot mode, where the detector rotates to
a given angle, halts for a specified acquisition time Ta, collects photons, and then proceeds
to the next angle. Longer acquisition times generally yield more accurate reconstructions
and lower uncertainty, so we evaluate Ta ∈ {1, 100, 10000}.

25
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Table 4.1: Prior likelihood mixing distributions µt0−1 and sequential likelihood mix-
ing distributions µs−1. For non-diffusion methods, the initial distribution at s = 0 is
µ0(ν) = N (ν; θ̄, diag(s2

1, . . . , s2
r2)) with image dataset sample mean θ̄ and sample vari-

ances si ∈ (0,∞), i ∈ [r2]. In prior likelihood mixing experiments with diffusion we sample
unconditionally (Algorithm 2) if t0 = 1 and Lt0−1-guided (Algorithm 3) if t0 ∈ {2, 3, . . . }.
In sequential likelihood mixing experiments with t0 = 1 and diffusion, µ0 is constructed
using unconditional sampling, otherwise we use Ls−1-guidance to construct µs−1 with
s ∈ {2, 3, . . . }. Approximate confidence sequence use rely on Laplace’s method (Theo-
rem 2.4).

Specialization Shorthand Definition Exact

Prior Likelihood Mixing

Standard normal P-SN N (0, I) No
Learned normal P-LN N (θ̄, diag(s2

1, . . . , s2
r)) No

U-Net mixture P-UMix 1
k

∑k
i=1 δθ̂t0−1,i

Yes
U-Net median P-UMed δθ̂t0−1

with θ̂t0−1 = median(θ̂t0−1,1, . . . , θ̂t0−1,k) Yes
Diffusion mixture P-DMix 1

k

∑k
i=1 δθ̂t0−1,i

Yes
Diffusion median P-DMed δθ̂t0−1

with θ̂t0−1 = median(θ̂t0−1,1, . . . , θ̂t0−1,k) Yes

Sequential Likelihood Mixing

MLE S-MLE δ
θ̂

MLE
s−1

Yes
MAP S-MAP δ

θ̂
MAP
s−1

, prior N (0, I) Yes
U-Net mixture S-UMix 1

k

∑k
i=1 δθ̂s−1,i

Yes
U-Net median S-UMed δθ̂s−1

with θ̂s−1 = median(θ̂s−1,1, . . . , θ̂s−1,k) Yes
Diffusion mixture S-DMix 1

k

∑k
i=1 δθ̂s−1,i

Yes
Diffusion median S-DMed δθ̂s−1

with θ̂s−1 = median(θ̂s−1,1, . . . , θ̂s−1,k) Yes
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We also investigate the effect of delaying the construction of the confidence sequence by
choosing different starting steps t0. If t0 ∈ {2, 3, . . . }, the first t0−1 samples are used only
to inform prior or mixing distributions, and no confidence sets are available until t0, at
which point we construct Ct0 . From then on we abusively write for all t0 ∈ N and t ∈ N0

Ct0+t(βt0+t(δ)) =

θ ∈ Θ

∣∣∣∣∣∣−
t0+t∑
s=t0

log ps(ys | θ) ≤ βt0+t(δ)

 ,

with the understanding that the sets are based only on post–burn-in data (xs, ys)t0+t
s=t0 .

This notation highlights the trade-off: larger t0 allows priors and mixing distributions
to be more concentrated, but reduces the amount of data available for constraining the
confidence sets later on. We therefore consider t0 ∈ {1, 60, 120}.

Overall, with 100 test set images, 12 confidence sequence specializations, 3 acquisition
times, and 3 starting steps, we simulate a total of 10 800 confidence sequences.

Since many of the confidence sequence specializations rely on predictions from learned
models, we first describe these in more detail. In particular, we focus on post-processing
U-Nets and diffusion models. Their performance is critically influenced by several factors,
including dataset generation, pre-processing, training procedures, hyperparameter choices,
and, in the case of diffusion models, the inference algorithm. We discuss post-processing
U-Nets first, before turning to diffusion models.

4.1.1 Post-processing U-Net Architecture

In Section 3.1 a general overview of U-Nets has been presented. We now focus on design
choices and implementation details.

In this work, we used the UNet2DModel class from the Python library diffusers (von Platen
et al., 2022), version 0.33.1, to implement Transformer-U-Net hybrids that chain residual
and Self-Attention blocks. An illustration of the overall architecture of the Post-processing
U-Nets1 is provided in Figure 4.1, while Figure 4.2 details the individual blocks.

The FBP first gets processed by a Conv2d block which represents a 2D convolution
layer (Fukushima, 2013; Schmidhuber, 2015).2

Then several AttnDownBlocks process the resulting image, together with a time embed-
ding.3 The AttnDownBlocks apply three ResnetBlock2D and Attention blocks in an
interleaving fashion. After that a strided convolution with stride 2 is applied, cutting
spatial dimensions by half. Intermediate hidden states are stored for later use by its
corresponding AttnUpBlock. See Skip 1, . . . , Skip 4 in Figure 4.2a and Figure 4.2b.
The Self-Attention block in Figure 4.2e dynamically selects one of the three scaled
dot product attention implementations, depending on what it considers optimal for the
workload (Paszke et al., 2017; Lefaudeux et al., 2022; Dao, 2023). GroupNorm, SiLU and
Dropout blocks correspond to Group Normalization (Wu and He, 2018), SiLU activa-
tion function (Hendrycks and Gimpel, 2023) and Dropout layers (Hinton et al., 2012),

1Adopting the terminology in (Kiss et al., 2025) we call our U-Nets post-processing U-Nets since they
post-process FBP reconstructions.

2All Conv2d blocks have a kernel size of 3, stride 1 and 1 pixel zero padding and preserve spatial
dimensions.

3The advantage of giving the network time information is that it informs it about the quality of the
FBP reconstruction.
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Figure 4.1: Post-processing U-Net architecture overview.
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Figure 4.2: Detailed view of U-Net blocks: AttnDownBlock and AttnUpBlock (top row),
UNetMidBlock2D, ResnetBlock2D, and Attention (bottom row).
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respectively. D → D ×H ×W blocks expand D dimensional vectors into a D ×H ×W
dimensional space by repeating its coordinates across them. C×H×W → HW×C blocks
unroll dimensions H and W into a single dimension and transposes the result afterward.
HW × C → C ×H ×W blocks do the inverse operation.

UNetMidBlock2D takes a time embedding and hidden state produced by the last Attn-
DownBlock as input, processes it using an Attention block and two ResnetBlock2D. The
result is a hidden state that encodes global information about the FBP reconstruction.

Afterwards, four AttnUpBlocks repeatedly upsample and enrich this hidden state with
information encoded in intermediate hidden states from adjacent AttnDownBlocks. Lastly,
a GroupNorm, SiLU and Conv2d layer gets applied, which yields the final image prediction.

Training

We first split the dataset of 1000 square 64×64 greyscale chip images θ∗
1, . . . , θ∗

1000 ∈ Θ =
[0, 1]642 into a 900 images training set Dtrain := {θ∗

1, . . . , θ∗
900} and a 100 images test set

Dtest := {θ∗
901, . . . , θ∗

1000}.4 Then, split the training set into 9 folds F1, . . . , F9 with fold
Fj , j ∈ [9] consisting of a training and validation set, symbolically fold Fj := (D(j)

train,D(j)
val).

Define the index set

Ij := {100(j − 1) + 1, . . . , 100(j − 1) + 100}

for all j ∈ [9]. Then the training set indices [900] = I1 ∪ · · · ∪ I9. Next, define

D(j)
train :=

θ∗
i ∈ Dtrain | i ∈

⋃
l ̸=j

Il

 and D(j)
val := {θ∗

i ∈ Dval | i ∈ Ij} .

We train 27 U-Nets in total; one each fold Fj ∈ {F1, . . . , F9} and acquisition time
Ta ∈ {1, 100, 10000}.

Consider some fixed Fj , j ∈ [9] and acquisition time Ta ∈ {1, 100, 10000}. We train the
corresponding U-Net on D(j)

train and pick the best checkpoint based on its performance on
D(j)

val. The loss function and performance measure is the coordinate-wise mean squared
error (MSE). For all ground-truth images θ∗ ∈ Θ = [0, 1]64×64 and predictions θ̂ ∈ Θ,
define the mean squared error (MSE) as

MSE(θ̂, θ∗) := 1
642

64∑
i=1

64∑
j=1

(
θ̂i,j − θ∗

i,j

)2
.

For all batches of predictions θ̂1:n ∈ Θn with corresponding targets θ∗
1:n ∈ Θn, we extend

this by averaging over images:

MSE(θ̂1:n, θ∗
1:n) := 1

n

n∑
k=1

MSE(θ̂k, θ∗
k).

In order to make a prediction, the network takes a filtered backprojection, computed using
the Shepp-Logan filter, and a time step as input. FBPs are in turn computed based on a
sinogram

St = (yi1 , . . . , yit) ∈ Nt×64
0

4In this chapter, we occasionally treat images as elements of [0, 1]64×64 and at other times as elements
of [0, 1]642

, depending on whether spatial structure or vectorized form is more convenient.
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and corresponding angles x1, . . . , xt with xi1 ≤ · · · ≤ xit .

We simulate ten data sequences for each image. Denote the h-th data sequence, with
h ∈ [10], corresponding to the i-th image, with i ∈ [800], in D(j)

train as (xh,s, yj,i,h,s)180
s=1 and

its corresponding FBP as θFBP
j,i,h ∈ Θ. Denote the i-th image in D(j)

train as θ∗
j,i. Then

yj,i,h,s ∼ Pois
(
R(θ∗

j,i, xh,s)
)

.

To ensure different angles x·,s and photon counts yj,i,·,s across data sequences, we use a
different random seed for each one, i.e. the random seed for the data sequence h ∈ [10] is
h.

This setup results in 1440000 different FBP-target image pairs for each fold Fj , j ∈ [9];
one for each combination of data sequence index h ∈ [10], training image index i ∈ [800]
and acquisition step t ∈ [180].

We train for two epochs with AdamW, parameterized with an initial learning rate of 0.0003
and a weight decay factor of 0.042 (Loshchilov and Hutter, 2019). We use a batch size of
32 and a dropout probability of 0.29. The dimensionality of time embeddings is 32. As
we have grayscale images, the input FBPs have shape 1 × 64 × 64. The images that the
AttnDownBlocks output have shape 64×32×32, 128×16×16, 256×8×8 and 512×4×4.

To reduce gradient variance with respect to neural network parameters, we randomly
sample (FBP, acquisition step, target image) batches in a stratified manner. Fix a per-
mutation π1 := (i1,1, . . . , i1,8000) of [8000], and for all k ∈ [8000] fix a permutation
π2,k := (i2,k,1, . . . , i2,k,180) of [180]. These permutations are drawn uniformly at random
once and then treated as fixed throughout the following. Define

π1 := (π1
1, . . . π1

8000, . . . , π1
1, . . . , π1

8000︸ ︷︷ ︸
180 times

) ∈ [8000]1440000

π2 := (π2,1
1 , π2,2

1 , . . . , π2,8000
1 , π2,1

2 , . . . , π2,8000
179 , π2,1

180, π2,2
180, . . . , π2,8000

180 ) ∈ [180]1440000.

For all batch indices l ∈ [1440000/32] = [45000], we use π1,l := π1
l:l+32 and π2,l := π2

l:l+32.
Hence, batch l ∈ [45000] consists of images

θ∗
j,il :=

(
θ∗

j,il
1
, . . . , θ∗

j,il
32

)
∈ Θ32

with
il := ((π1,l

1 − 1 mod 800) + 1, . . . , (π1,l
32 − 1 mod 800) + 1) ∈ [800],

and FBPs

θFBP
j,il,hl :=

(
θFBP

j,il
1,hl

1
, . . . θFBP

j,il
1,hl

32
, . . . , θFBP

j,il
2,hl

1
, . . . , θFBP

j,il
32,hl

32

)
∈ Θ32

with
hl := (⌈π1,l

1 /800⌉, . . . , ⌈π1,l
32/800⌉) ∈ [180]

and acquisition steps π2,l ∈ [180].

In addition, we employ the cosine schedule with warmup learning rate schedule from the
diffusers library (von Platen et al., 2022). For the first 10% of training steps it linearly
increases the learning rate from 0 to 0.0003. Afterwards, it drops following a half-cosine
curve back to 0 over the remaining steps.
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The PSNR of U-Net ensemble predictions is summarized in Figure 4.3. In addition to peak
signal-to-noise ratio (PSNR), we report several complementary metrics in Table 4.3 and
Appendix C.2. For all ground-truth images θ∗ ∈ [0, 1]H×W and predictions θ̂ ∈ [0, 1]H×W ,
let MSE(θ̂, θ∗) be defined as above. Then

PSNR(θ̂, θ∗) := 10 · log10

(
1

MSE(θ̂, θ∗)

)
,

RMSE(θ̂, θ∗) :=
√

MSE(θ̂, θ∗),

L1(θ̂, θ∗) := 1
HW

∑
i,j∈[H]×[W ]

∣∣θ̂i,j − θ∗
i,j

∣∣,
ZeroOne(θ̂, θ∗) := 1

HW

∑
i,j∈[H]×[W ]

1
{

θ∗
i,j ̸= round(θ̂i,j)

}
.

These metrics capture pixel-wise error (RMSE, ℓ1), binary misclassification (ZeroOne),
and perceptual similarity (SS) in addition to PSNR. For structural similarity (SS), we use
the function skimage.metrics.structural_similarity from the scikit-image Python li-
brary (version 0.25.2) with data_range=1, following the formulation of Wang et al. (2004);
see also Wang and Bovik (2009) for a broader discussion of perceptual fidelity measures.

Next, we turn to our implementation of guided diffusion.
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Figure 4.3: PSNR of mean, median as well as individual U-Net ensemble member pre-
dictions against acquisition steps. Acquisition steps t ∈ N corresponds to data sequence
((xs, ys), s ∈ [t]) being used.
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4.1.2 Lt-Guided Diffusion

Following Section 3.2, we train an unconditional DDPM to capture the prior over images.
Algorithm 1 describes the training procedure. Algorithm 2 is designed to yield samples
from the underlying distribution of images. Importantly, this algorithm does not consider
observed data ((xs, ys), s ∈ [t]), t ∈ N. To use the observed data, we employ Algorithm 3
which interweaves denoising with consistency steps.

Algorithm 3 Lt-Guided Sampling
Require: Denoiser ϵϕ, number of outer steps N ∈ N, number of inner steps k ∈ N,

time indices τ1, . . . , τN ∈ [T ], learning rates η1, . . . , ηk ∈ (0,∞), data sequence
(x1, y1), . . . , (xt, yt) ∈ X × Y, guidance interval g ∈ [N ], number of cleanup steps
ct ∈ {0, . . . , N}

Ensure: Data- and prior-consistent reconstruction θ(τN+1) ∈ Θ
1: Initialize θ(τ1) ∼ N (0, I)
2: for n← 1, . . . , N do
3: Sample z ∼ N (0, I) if n < N , else set z ← 0
4: Set

µ
(τn)
0 ← 1

√
ατn

(
θ(τn) − βτn√1− ᾱτn

ϵϕ(θ(τn), τn)
)

5: if n > 1 and n mod g = 0 and n ≤ N − ct then
6: Initialize optimizer: optim← init

(
µ

(τn)
0 , η0

)
7: for i← 1, . . . , k do
8: Take consistency step µ

(τn)
i ← step

(
optim, ηi, µ

(τn)
i−1 , (xs, ys)t

s=1

)
9: end for

10: else
11: µ

(τn)
k ← µ

(τn)
0

12: end if
13: Update θ(τn+1) ← µ

(τn)
k + στnz

14: end for
15: return θ(τN+1)

Algorithm 3 differs from Algorithm 2 in multiple ways. One difference is that the outer
loop iterates from τ1 to τN where T ≈ τ1 > τ2 > · · · > τN = 0 and N ≪ T , N ∈ N.
This speeds up inference by reducing the number of denoising and consistency steps. The
second difference is the existence of the inner loop. In it, we optimize the current prediction
of the mean µ

(τn)
0 towards an image that has a reduced negative log-likelihood Lt, µ

(τn)
k ,

thereby making it more consistent with the observed data sequence ((xs, ys), s ∈ [t]). In
our experiments, we choose T = 1000 in Algorithm 1 and N = 100, k = 50 and a constant
learning rate of ηi = 0.05 for all i ∈ [k] for Algorithm 3.

Consistency steps use the entire available sinogram (all acquired angles and detector bins).
For all t ∈ N, outer iterations n ∈ [N ], inner iterations i ∈ [k], iterates µ

(τn)
i−1 ∈ Θ, measured

sinograms
St := (ys, s ∈ [t]) ∈ Nt×64

0 ,

predicted sinogram

Ŝt := (ŷs, s ∈ [t]) = (R(µ(τn)
i−1 , x1), . . . ,R(µ(τn)

i−1 , xt)) ∈ [0,∞)t×64,
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and angles x1, . . . , xt ∈ [0, 180], the objective that

step
(
optim, ηi, µ

(τn)
i−1 , ((xs, ys), s ∈ [t])

)
minimizes is

Lt(θ) = 1
t · 64

t∑
s=1

64∑
d=1

(
ŷs,d − ys,d log(ŷs,d + ε) + log Γ(ys,d + 1)

)
,

where ε = 10−8 is a constant for numerical stability. Lt is essentially a numerically stabi-
lized and averaged Poisson negative log-likelihood.5 Dividing by the number of detector
bins (64) and step (t) ensures that we can use the same learning rate across resolutions
and acquisition steps. If t = 0 we do not use guidance, i.e. Lt(·) = 0. To take consistency
steps we use the Adam optimizer (Kingma and Ba, 2017), so init

(
µ

(τn)
0 , η0

)
returns a

corresponding initialized Adam optimizer instance. For stability step clamps pixel values
to [0, 1], predicted sinogram values to [0,∞), replaces NaNs in gradients with zero and
afterwards clips the by projecting them onto the ℓ2 ball with radius 1. We choose the
number of cleanup steps c ∈ [N ] heuristically:

ct := ⌊max(0, 1− t/180) · 5⌋+ 5.

Intuitively, the more measurements we have (i.e. the larger t is), the fewer cleanup steps
we need since gradient steps w.r.t. Lt inject less noise into the reverse process. So for
larger t we need to clean up less noise at the end of the reverse process, justifying a lower
number of cleanup steps.

For simplicity we did not include normalization and denormalization operations in Al-
gorithm 3. Normalizing images to [−1, 1]64×64 is however important in practice since
it increases training stability. For this reason, ϵϕ is trained on normalized images in
[−1, 1]64×64 in our experiments. This necessitates step to denormalize and clip µ

(τn)
i−1 to

[0, 1]64×64 before computing Ŝt. After performing the gradient step, step also needs to
normalize the updated the image back to R64×64 such that the next denoising step works
as expected. Finally, before returning θ(τN+1), denormalization and clipping have to be
performed as well.

The noise predictor ϵϕ is a U-Net trained with learning rate 0.0025, batch size 32, dropout
0.37, and weight decay 0.0043 for 500 epochs. We implement it with diffusers’ UNet2DModel,
but with an architecture distinct from the post-processing U-Nets (see Figures 4.4 and 4.5).

4.1.3 MLE and MAP Estimates

To approximate the maximum likelihood and maximum a posteriori estimates introduced
in Section 2.3.1, we solve the optimization problems

θMLE
t ∈ arg min

θ∈Θ
Lt(θ),

θMAP
t ∈ arg min

θ∈Θ

(
Lt(θ)− log f0(θ)

)
,

where f0 denotes the density of the prior distribution µ0. In practice, we obtain approxi-
mations θ̂

MLE
t ≈ θMLE

t and θ̂
MAP
t ≈ θMAP

t using Algorithm 4. We generally parameterize
it with maxSteps = 20000 and patience = 100.

5The log Γ term may be dropped since it does not depend on µ
(τn)
i−1 .
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4.1.4 Results

As mentioned in the beginning of this section, we compare confidence sequences via their
confidence coefficients βt(δ) with t ∈ N and δ ∈ (0, 1).

Let error level δ ∈ (0, 1), acquisition step t ∈ N and confidence coefficients βt,1(δ), βt,2(δ) ∈
(0,∞) with same starting step t0 ∈ N, t ≥ t0 and acquisition time Ta ∈ (0,∞). If βt,1(δ) <
βt,2(δ), the confidence set corresponding to βt,1(δ) is smaller than the one corresponding
to βt,2(δ), that is, Ct(βt,1(δ)) ⊂ Ct(βt,2(δ)).

For all error levels δ ∈ (0, 1), acquisition steps t ∈ N, and confidence coefficients βt(δ) ∈
(0,∞), define normalized confidence coefficient

β̃t(δ) := βt(δ)− Lt(θ∗)
Lt(θ∗) .

Since for all data sequences (x1, y1), . . . , (xt, yt) ∈ X × Y, the negative log-likelihood
satisfies Lt(θ∗) > 0 we have

βt,1(δ) < βt,2(δ) ⇐⇒ βt,1(δ)− Lt(θ∗) < βt,2(δ)− Lt(θ∗)

⇐⇒ βt,1(δ)− Lt(θ∗)
Lt(θ∗) <

βt,2(δ)− Lt(θ∗)
Lt(θ∗)

⇐⇒ β̃t,1(δ) < β̃t,2(δ).

In words, smaller normalized confidence coefficients correspond to smaller confidence sets.
However, normalized confidence coefficients are more interpretable than their raw coun-
terparts since β̃t(δ) = 0 is always optimal6 and we can check whether it approaches zero
as we increase t and does so quickly. If β̃t(δ) approaches zero quickly we can infer that
Ct(βt(δ)) tightens quickly too.

Table 4.2: Average confidence coefficient by method and configuration. Overall minimal
average confidence coefficients are bold. Additionally minimal exact average confidence
coefficients are bold and marked with an asterisk (*).

Ta = 1 Ta = 100 Ta = 10000

Method t0 = 1 t0 = 60 t0 = 120 t0 = 1 t0 = 60 t0 = 120 t0 = 1 t0 = 60 t0 = 120

P-SN 17132 11938 6437 28486 19460 10113 74758 28401 14661
P-LN 15964 11040 5919 28614 19635 10314 41942 28627 14889
P-UMix 24218 10418 5277 8.2 × 108 19882 9929 8.6 × 1012 67413 22364
P-UMed 24218 10432 5279 8.2 × 108 20024 9949 8.6 × 1012 83241 23957
P-DMix 23206 10466 5296 1.2 × 106 20417 10125 1.2 × 108 60974 28451
P-DMed 35978 10521 5312 3.0 × 106 21460 10394 3.0 × 108 85265 33723
S-MLE 16674 10707 5388 74284 20243 10054 3.8 × 106 30561 14682*
S-MAP 16502 10814 5506 68706 20361 10507 3.6 × 106 30557* 15830
S-UMix 15790 10395 5276 50285* 19640* 9919 2.1 × 106* 47709 20391
S-UMed 15864 10401 5276 53640 19732 9943 2.5 × 106 56492 22883
S-DMix 16164 10454 5311 1.3 × 105 19957 10079 1.0 × 107 51741 25050
S-DMed 16674 10479 5327 2.7 × 105 20550 10258 2.3 × 107 70609 32092

Figure 4.6 displays normalized confidence coefficients β̃t(δ) over acquisition steps for all
considered confidence sequences. Shaded bands around the curves indicate the standard

6Here, optimal means that βt(δ) is as close as possible to Lt(θ∗) while satisfying θ∗ ∈ Ct(βt(δ)). In
this case, Ct(βt(δ)) is the tightest likelihood-based confidence set containing θ∗, given that Lt depends on
((xs, ys), s ∈ [t]).



36 Experiments

Figure 4.6: Normalized confidence coefficients β̃t(δ) across different methods, acquisition
times, and starting steps. Shaded regions denote standard error of the mean (SEM). The
vertical axis is on a logarithmic scale.
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error of the mean (SEM) at each acquisition step. Complementary plots of raw coeffi-
cients βt(δ), their differences βt(δ) − Lt(θ∗), and normalized coefficients are provided in
Appendix C.1.

For easier comparison between methods and configurations, Table 4.2 reports average
confidence coefficients, aggregated over test set images and steps, for all combinations of
acquisition time, starting step, and method. For low acquisition time (Ta = 1), sequential
likelihood mixing with U-Net ensembles (S-UMix) yields the smallest average coefficients.
At medium acquisition time (Ta = 100), prior likelihood mixing with a standard normal
prior (P-SN) achieves the lowest coefficients overall, while among the exact methods, S-
UMix performs best. For high acquisition time (Ta = 10000), P-SN and P-LN again yield
the smallest averages, whereas among exact methods, S-UMix, S-MLE, and S-MAP attain
the lowest values.

While all exact constructions enjoy formal anytime-valid coverage guarantees, the approx-
imate prior likelihood mixing methods (P-SN, P-LN) do not. To assess whether these
methods nevertheless achieve acceptable coverage in practice, we evaluate sequence-level
violations: for each test image, we count it as a violation if at least one of the confidence
sets in the sequence fails to contain the true parameter. We then average these indicators
over the test set to obtain an empirical violation rate. To make this precise, we now
introduce the necessary notation and definitions.

For all error levels δ ∈ (0, 1), starting steps t0 ∈ {1, 60, 120}, acquisition times Ta ∈
{1, 100, 10000}, confidence coefficient specializations

m ∈ {P-SN, P-LN, P-UMix, P-UMed, P-DMix, P-DMed,

S-MLE, S-MAP, S-UMix, S-UMed, S-DMix, S-DMed} =: M
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and test set images θ∗
i ∈ {θ∗

1, . . . , θ∗
|Dtest|}, i ∈ [|Dtest|], denote the corresponding (approx-

imate) confidence coefficient at step t0 + t, with t ∈ {0, 1, . . . , 180− t0}, by βt0+t,m,i(δ).

Associated with each quadruple (t0, t, m, i), the (approximate) confidence set is

Ct0+t,m,i
(
βt0+t,m,i(δ)

)
:=
{

θ ∈ Θ
∣∣∣ − t0+t∑

s=t0

log ps(yi,s | θ) ≤ βt0+t,m,i(δ)
}

,

where
(
xi,1, yi,1

)
, . . . ,

(
xi,180, yi,180

)
denotes the observation sequence corresponding to the

image θ∗
i .

For acquisition time Ta ∈ {1, 100, 10000}, method m ∈ M , and starting step t0 ∈
{1, 60, 120}, we define the empirical violation rate v̂t0,Ta,m ∈ [0, 1] of method m as

v̂t0,Ta,m := 1
|Dtest|

|Dtest|∑
i=1

1
{
∃ t ∈ {0, . . . , 180− t0} : θ∗

i /∈ Ct0+t,m,i
(
βt0+t,m,i(δ)

)}
,

where Dtest is the test set of ground-truth images. This is a Monte Carlo estimate of

vt0,Ta,m := Eϑ

[
1
{
∃ t ∈ {0, . . . , 180− t0} : ϑ /∈ Ct0+t,m

(
βt0+t,m(δ)

)}]
,

where Eϑ denotes an expectation over random images from the underlying image distri-
bution.

Figure 4.7 shows that the exact confidence sequences (all except P-LN and P-SN) have
empirical violation rates that do not exceed δ = 0.05 in most settings. The only exception
is P-DMix using starting step t0 = 1 and acquisition time Ta = 1. In contrast, P-LN
and P-SN frequently exceed δ, particularly for Ta ∈ {100, 10000}. We emphasize that
vt0,Ta,m ≤ δ is a weaker guarantee than anytime validity: it is (i) a guarantee over finitely
many confidence sets rather than over a infinite number of them, and (ii) an average over
random images ϑ, whereas anytime validity is a point-wise guarantee ensuring that, for
each fixed parameter, the violation probability is at most δ simultaneous for all confidence
sets. Given the observed high empirical violation rate of P-LN and P-SN, we do not
recommend Laplace-based approximations for prior likelihood mixing in practice.

4.2 Uncertainty Images

In this section, we present confidence-sequence-based uncertainty images. These images
visualize which locations in a reconstruction are more or less reliable. A pixel value of
0 in the uncertainty image indicates full reliability of the corresponding reconstructed
pixel, whereas a value of 1 indicates complete unreliability. As mentioned before, there
are multiple ways to construct such images. We begin with the most reliable but also most
conservative approach, namely pixelwise uncertainty images.

4.2.1 Pixelwise Uncertainty Images

Let t ∈ N, δ ∈ (0, 1), and βt(δ) ∈ (0,∞) be a confidence coefficient. We define pixelwise
uncertainty image upixel

t ∈ [0, 1]r×r by setting, for each pixel (i, j) ∈ [r]2,

upixel
t,i,j := θ

pixel
t,i,j − θpixel

t,i,j ,
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Figure 4.7: Empirical violation rates v̂t0,Ta,m for investigated methods m ∈ M , starting
steps t0 ∈ {1, 60, 120} and acquisition times Ta ∈ {1, 100, 10000}.

where
θ

pixel
t,i,j := max

θ∈Ct(βt(δ))
θi,j , θpixel

t,i,j := min
θ∈Ct(βt(δ))

θi,j .

If βt(δ) is taken from an exact confidence sequence for θ∗, then with probability at least
1− δ

θ∗ ∈
{

θ ∈ Θ : ∀(i, j) ∈ [r]2, θi,j ∈ [θpixel
t,i,j , θ

pixel
t,i,j ]

}
.

This guarantee strongly motivates the use of upixel
t to visualize the uncertainty across

pixels of θ∗.

However, Figure 4.8 shows that the average pixelwise uncertainty,

ūpixel
t := 1

r2

∑
(i,j)∈[r]2

upixel
t,i,j ,

decreases only slowly with acquisition time and over 180 steps. Only approximate con-
fidence sequences, which lack anytime-validity guarantees both theoretically and empir-
ically, yield notable reductions for acquisition times Ta ∈ {1, 100}. For Ta = 10000, S-
MLE and S-MAP confidence sequences provide some reduction, but in light of the strong
predictive performance of U-Net ensembles in this regime (see Table 4.3), the pixelwise
uncertainty images remain highly conservative.

In Table 4.4 the best performing confidence sequence constructions utilizing 180 data
points (x1, y1), . . . , (x180, y180 ∈ X × Y are displayed. In Figures 4.9 to 4.11 you can find
the corresponding pixelwise uncertainty images for the first test set image.
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Figure 4.8: Pixelwise uncertainty averaged across all pixels and 100 test set images for
different confidence sequences, grouped by acquisition time.
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Figure 4.9: Pixelwise uncertainty image for P-DMix CS with Ta = 1, t0 = 1 and t = 180.
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Table 4.3: Performance metrics for U-Net ensemble median predictions across different
steps and acquisition times. Values shown as mean ± SEM across test images.

Metric Step (t) Acquisition Time (Ta)

1 100 10000

PSNR (dB)
1 10.06± 0.14 11.36± 0.23 11.53± 0.23
90 30.83± 0.73 40.46± 0.52 41.98± 0.54
180 34.14± 0.64 42.98± 0.40 44.38± 0.43

RMSE
1 0.3181± 0.0051 0.2791± 0.0067 0.2736± 0.0066
90 0.0383± 0.0026 0.0113± 0.0007 0.0097± 0.0007
180 0.0249± 0.0016 0.0079± 0.0004 0.0069± 0.0004

L1
1 0.2432± 0.0046 0.1922± 0.0063 0.1882± 0.0062
90 0.0077± 0.0007 0.0023± 0.0001 0.0019± 0.0001
180 0.0047± 0.0003 0.0019± 0.0001 0.0016± 0.0001

ZeroOne
1 0.2201± 0.0079 0.1857± 0.0067 0.1824± 0.0065
90 0.0737± 0.0016 0.0711± 0.0015 0.0710± 0.0015
180 0.0720± 0.0015 0.0710± 0.0015 0.0710± 0.0015

SS
1 0.1466± 0.0136 0.3313± 0.0258 0.3478± 0.0253
90 0.9802± 0.0023 0.9974± 0.0003 0.9980± 0.0003
180 0.9908± 0.0010 0.9987± 0.0002 0.9990± 0.0001

Table 4.4: Average pixelwise uncertainty across test set images of top three exact methods-
starting step combinations using 180 data points (x1, y1), . . . , (x180, y180) ∈ X × Y.

Acquisition Time Best Method Second Best Third Best
Ta = 1 P-DMix, t0 = 1 P-UMix, t0 = 1 S-UMed, t0 = 1

0.968± 0.000 0.968± 0.000 0.968± 0.000
Ta = 100 S-UMed, t0 = 60 S-UMix, t0 = 60 P-UMed, t0 = 60

0.962± 0.011 0.963± 0.010 0.965± 0.007
Ta = 10000 S-MAP, t0 = 60 S-MLE, t0 = 60 S-MLE, t0 = 120

0.502± 0.172 0.518± 0.170 0.565± 0.164
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Figure 4.10: Pixelwise uncertainty image for S-UMed CS with Ta = 100, t0 = 60 and
t = 180.
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Figure 4.11: Pixelwise uncertainty image for S-MAP CS with Ta = 10000, t0 = 60 and
t = 180.

4.2.2 Global Uncertainty Images

Next, we consider an alternative, less conservative construction called global uncertainty
images, denoted uglobal

t ∈ [0, 1]r×r. Here, we implicitly assume that all pixels vary together,
which justifies the term ’global’. Although this assumption is almost certainly unrealistic,
it can make the resulting uncertainty images less conservative and in some cases more
informative.

For t ∈ N and (i, j) ∈ [r]2, define

uglobal
t,i,j := θ

global
t,i,j − θglobal

t,i,j ,

with θ
global
t , θglobal

t ∈ Θ such that there exist

νglobal
t ∈ arg max

θ∈Ct

∑
(i,j)∈[r]2

θi,j , νglobal
t ∈ arg min

θ∈Ct

∑
(i,j)∈[r]2

θi,j ,

for which
θ

global
t ≈ νglobal

t , θglobal
t ≈ νglobal

t .

We obtain these approximations using gradient-based constrained optimization.

Examples are shown in Figures 4.12 to 4.14. These images yield less conservative uncer-
tainty estimates but are informative only for larger acquisition times, Ta ∈ {100, 10000}.

4.2.3 Prediction-based Uncertainty Images

As shown in the previous sections, pixelwise and global uncertainty images are often too
conservative to be informative, especially in low-acquisition-time or low-data settings. To
obtain tighter uncertainty estimates, we instead use data-consistent predictions.

At step t ∈ N, we generate k ∈ N predictions θ̂t,1, . . . , θ̂t,k ∈ Θ. Predictions that do not lie
within the corresponding confidence set are projected back into it by gradient steps that
minimize the negative log-likelihood Lt. If the projection fails, the prediction is replaced
with θ̂

MLE
t . Denote the modified predictions by θ̂

′
t,1, . . . , θ̂

′
t,k ∈ Θ.

We then define prediction-based uncertainty image upred
t ∈ [0, 1]r×r with pixel values

upred
t,i,j := max

l∈{1,...,k}
θ̂

′
t,l,i,j − min

l∈{1,...,k}
θ̂

′
t,l,i,j , (i, j) ∈ [r]2.



42 Experiments
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Figure 4.12: Global uncertainty image for P-DMix CS with Ta = 1, t0 = 1 and t = 180.
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Figure 4.13: Global uncertainty image for S-UMed CS with Ta = 100, t0 = 60 and t = 180.
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Figure 4.14: Global uncertainty image for S-MAP CS with Ta = 10000, t0 = 60 and
t = 180.
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Figure 4.15: Prediction-based uncertainty images across acquisition steps for P-DMix CS
with Ta = 1, t0 = 1, and U-Net ensemble predictions.
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Figure 4.15 illustrates this approach for an example confidence sequence. It exploits deep-
learning-based predictions to produce tighter and more informative uncertainty estimates.
For early acquisition steps, when predictions collapse to the average of the training set
images due to insufficient data, the resulting uncertainties are less reliable. However,
afterwards the average uncertainty

ūpred
t := 1

r2

∑
i,j∈[r]

upred
t,i,j

consistently upper bounds the true mean absolute error (MAE); see Figure 4.16. This
property can be exploited to derive practical early stopping rules, e.g. stopping data
acquisition once ūpred

t falls below a threshold such as 0.015. Of course, for robustness,
such thresholds must be validated across additional examples.
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Figure 4.16: Prediction-based average uncertainty and mean absolute error (MAE) across
pixels for P-DMix CS with Ta = 1, t0 = 1, U-Net ensemble predictions, and acquisition
steps t ∈ [180].

4.2.4 Distance-based Uncertainty Images

Another approach to defining uncertainty scores is to take a given prediction θ̂ ∈ Θ and,
within the confidence set, find an image that is most different from θ̂ according to a
chosen distance. Formally, for a distance function d : Rr2 × Rr2 → [0,∞), and whenever
Ct(βt(δ)) ̸= ∅, define the set of distance maximizers

Mt(θ̂) :=
{

θ ∈ Ct(βt(δ))
∣∣∣ d(θ̂, θ) = max

θ′∈Ct(βt(δ))
d(θ̂, θ′)

}
.

In our visualizations, we use the ℓ2-distance, but other choices are possible.

Let νmax
t ∈ Mt(θ̂) be one such maximizer and let θmax

t ∈ Θ denote an approximation
obtained in practice (e.g., via gradient-based optimization) such that

θmax
t ≈ νmax

t .
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Given θ̂ and θmax
t , define distance-based uncertainty image ud

t ∈ [0, 1]r×r with pixel values

ud
t,i,j :=

∣∣θ̂i,j − θmax
t,i,j

∣∣, (i, j) ∈ [r]2.

Because Θ = [0, 1]r2 , each ud
t,i,j ∈ [0, 1]. The mean uncertainty score is

ūd
t := 1

r2

∑
(i,j)∈[r]2

ud
t,i,j .

This construction quantifies uncertainty relative to the prediction θ̂: small ud
t,i,j indicate

pixels where the prediction is close to at least one extremal element of the confidence
set. Conversely, if θ̂ is far from the true parameter, there will typically exist an element
of the confidence set that is far from θ̂, resulting in large values of ud

t,i,j . In this way,
the overconfidence observed in prediction-based uncertainty images (see Section 4.2.3) is
mitigated, since the distance-based construction reacts by assigning greater uncertainty
whenever predictions deviate substantially from the confidence set. Example distance-
based uncertainty images can be seen in Figure 4.17. As the figure shows, the average
distance-based uncertainty scores ūd

t decrease substantially over time, indicating that these
uncertainty images not only avoid overconfidence, but also avoid being overly conservative.
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Figure 4.17: Distance-based uncertainty images across acquisition steps for S-UMix CS
with Ta = 100, t0 = 60, and U-Net ensemble predictions. Here the ℓ2-distance is used to
construct θmax.



Chapter 5

Summary

The goal of this thesis was to analyze, develop, and experimentally compare confidence-
sequence–based methods for uncertainty quantification in tomographic imaging. Although
most established approaches provide only point predictions without indicating their re-
liability, the methods presented here overcome this limitation through mathematically
rigorous confidence sequences based on probability theory.

The work focused primarily on two constructions, prior likelihood mixing and sequential
likelihood mixing, and further examined Laplace-based approximations of prior likelihood
mixing. We specialized these constructions using U-Net ensembles, diffusion models, and
statistical estimators.

The experimental results reveal that the different confidence sequence variants offer com-
plementary strengths. U-Net ensembles and diffusion models achieve highly accurate pre-
dictions even under short acquisition times, while classical statistical estimators such as
MLE and MAP are particularly effective in high-count regimes, producing tighter and
more informative confidence sequences. Beyond numerical performance, the thesis also
introduced uncertainty images, which visualize local reconstruction reliability and offer an
intuitive way to assess prediction trustworthiness. While pixelwise uncertainty images are
the most reliable, we found that distance-based uncertainty images are less conservative
and avoid the disadvantages that global and prediction-based uncertainty images suffer.

Together, these contributions demonstrate that the combination of statistical theory and
modern machine learning methods enables rigorous uncertainty quantification for tomo-
graphic reconstruction. In the longer term, the presented methods have the potential to
support safer and more reliable decision-making in medical imaging, industrial applica-
tions, and beyond.
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Appendix A

Definitions and Theorems

All probability theory related definitions, theorems, lemmas and examples in this appendix
come from Klenke (2020) unless stated otherwise. Some of them are copied word for word.

Definition A.1 (Asymptotic dominance). We say that f : Rd → R asymptotically dom-
inates g : Rd → R (with limit x0), symbolically f(x) = o(g(x)), if and only if

lim
x→x0

f(x)
g(x) = 0.

Definition A.2 (Asymptotic equivalence (de Bruijn, 1970)). We say that f : R → R is
asymptotically equivalent to g : R→ R, symbolically f ∼ g, if

lim
x→∞

f(x)
g(x) = 1.

Definition A.3 (Multi-index (Königsberger, 2004)). Let α1, . . . , αk ∈ {0, 1, . . . } and α =
(α1, . . . , αk), then

(i) |α| := α1 + α2 + · · ·+ αn,

(ii) α! := α1! · α2! · · ·αn!,

(iii) for x ∈ Rd, define xα := xα1
1 xα2

2 · · ·xαd

d ,

(iv) for f : Rk → R for which all (k + 1)-th order partial derivatives exist, define

Dαf := ∂|α|f

∂xα1
1 · · · ∂xαd

d

.

Theorem A.4 (Taylor’s theorem (Königsberger, 2004)). Let f : Rd → R. If all (k +1)-th
order partial derivatives of f exist and form continuous functions, that is f ∈ Ck+1(Rd),
then for all x, x0 ∈ Rd there exists a ξ ∈ Rd that lies on the line segment between x and
x0 such that

f(x) = Tk(x, x0) + Rk(x, x0)
with k-th order Taylor polynomial

Tk(x, x0) =
∑

α∈{1,2,... }d,|α|≤k

Dαf(x0)
α! (x− x0)α
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and remainder term

Rk(x, x0) =
∑

α∈{1,2,... }d,|α|=k+1

Dαf(ξ)
α! (x− x0)α.

Remark. The remainder term Rk in Theorem A.4 is asymptotically dominated (Defini-
tion A.1) by (x− x)k with respect to limit x0, symbolically Rk = o((x− x0)k).

Definition A.5 (σ-algebra). A collection of subsets A ⊆ 2Ω is called a σ-algebra if it
satisfies:

(i) Ω ∈ A.

(ii) For every A ∈ A, its complement Ac is also in A.

(iii) A is closed under countable unions.

Theorem A.6 (Generated σ-algebra). Let E ⊆ 2Ω. Then there exists a smallest σ-algebra
σ(E) with E ⊆ σ(E):

σ(E) :=
⋂

A⊆2Ω is a σ-algebra
E⊆A

A.

σ(E) is called the σ-algebra generated by E. E is called the generator of σ(E).

Definition A.7 (Topological space). A topological space is a pair (X, τ), where X is a
set and τ is a collection of subsets of X, called open sets, satisfying:

1. ∅ and X are in τ .

2. The union of any collection of sets in τ is also in τ .

3. The intersection of any finite number of sets in τ is also in τ .

Remark. The usual (or standard) topology on Rn, (Rn, τ) is the one induced by the
standard Euclidean metric. Here collection τ = {Br(x) : x ∈ Rn, r ∈ R} and open balls
Br(x) = {x′ ∈ Rn : ∥x′ − x∥2 < r}.

Definition A.8 (Borel σ-algebra). Let (Ω, τ) be a topological space (Definition A.7). Then
σ-algebra

B(Ω) := B(Ω, τ) := σ(τ)

that is generated by the open sets (Definition A.7) is called the Borel σ-algebra on Ω. The
elements A ∈ B(Ω, τ) are called Borel sets or Borel measurable sets.

Often we refer to B(Rn) = B(Rn, τ) with τ containing the open Euclidean balls (open
intervals R) as the Borel σ-algebra.

Definition A.9 (Metric space). A metric space is a pair (X, d) where X is a set and
d : X ×X → [0,∞) is a function (called a metric) satisfying:

1. d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X (symmetry).

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (triangle inequality).
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Definition A.10 (Cauchy sequence). Let (X, d) be a metric space (Definition A.9). A
sequence (xn) in X is called a Cauchy sequence if for every ϵ > 0 there exists an N ∈ N
such that for all m, n ≥ N ,

d(xm, xn) < ϵ.

This concept is central to the definition of completeness (Definition A.11).

Definition A.11 (Complete metric space). A metric space (X, d) (Definition A.9) is
complete if every Cauchy sequence in X (Definition A.10) converges to a limit that is also
in X.

Definition A.12 (Dense subset). Let (X, τ) be a topological space (Definition A.7). A
subset D ⊆ X is dense in X if every non-empty open set U ⊆ X intersects D; that is,

U ∩D ̸= ∅.

Equivalently, the closure of D is X.

Definition A.13 (Separable space). A topological space (X, τ) (Definition A.7) is sepa-
rable if there exists a countable dense subset (Definition A.12) D ⊆ X.

Example A.14. Qn is a countable dense subset (Definition A.12) of Rn, so Rn with the
usual topology (Appendix A) is separable (Definition A.13).

Definition A.15 (Polish space). A topological space X is called a Polish space if there
exists a metric d on X such that:

1. The metric d induces the topology on X (i.e. the open sets of X coincide with those
given by d; see Definition A.9).

2. The metric space (X, d) is complete (Definition A.11).

3. The metric space (X, d) is separable (Definition A.13).

Example A.16. Rn with the usual metric (Appendix A) is a Polish space (Defini-
tion A.15) since it is separable by Qn (Definition A.13) and complete (Definition A.11).

Definition A.17 (Measurable Space). A pair (Ω,A) consisting of a nonempty set Ω and
a σ-algebra A ⊆ 2Ω (Definition A.5) is called a measureable space. The sets A ∈ A are
called measurable sets. If Ω is at most countably finite and if A = 2Ω, then the measurable
space (Ω, 2Ω) is called discrete.

Remark. It is common to slightly abuse notation and call Ω a measurable space (Defini-
tion A.17), omitting the definition of the associated σ-algebra (Definition A.5). In those
cases Ω is the first entry of the actual measurable space.

Definition A.18 (Measure space). A triple (Ω,A, µ) is called a measure space if (Ω,A)
is a measurable space and µ is a measure (Definition A.24) on A.

Definition A.19 (Probability space). A measure space (Ω,A, P) (Definition A.18) with
P(Ω) = 1 is called a probability space and sets A ∈ A are called events.

Definition A.20 (Random variables). Let (Ω,A, P) be a probability space and (Ω′,A′)
be a measurable space. A function X : Ω → Ω′ is called a random variable if X is a
measurable map (Definition A.21). In the common case where (Ω′,A′) = (R,B(R)), X is
called a real random variable. For any A′ ∈ A′ we write

{X ∈ A′} := X−1(A′) and P(X ∈ A′) := P(X−1(A′)).
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Definition A.21 (Measurable maps). Let (Ω,A) and (Ω′,A′) be measurable spaces. A
function X : Ω → Ω′ is said to be A-A′-measurable if for every A′ ∈ A′, the preimage
X−1(A′) belongs to A. In the special case when Ω′ = R and A′ is the Borel σ-algebra B(R)
(Definition A.8), X is called an A-measurable real map.

Definition A.22 (Generated σ-algebra). Let (Ω′,A′) be a measurable space and let Ω be
a nonempty set. Let X : Ω→ Ω′ be a map. The preimage

X−1(A′) :=
{

X−1(A′) : A′ ∈ A′
}

is the smallest σ-algebra with respect to which X is measurable. We say that σ(X) :=
X−1(A′) is the σ-algebra on Ω that is generated by X.

Definition A.23 (Generated σ-algebra). Let Ω be a nonempty set. Let I be an arbitrary
index set. For any i ∈ I, let (Ωi,Ai) be a measurable space (Definition A.17) and let
Xi : Ω→ Ωi be an arbitrary map. Then

σ(Xi, i ∈ I) := σ

(⋃
i∈I

σ(Xi)
)

= σ

(⋃
i∈I

X−1
i (Ai)

)

is called the σ-algebra (Definition A.5) on Ω that is generated by (Xi, i ∈ I). This is the
smallest σ-algebra with respect to which all Xi are measurable (Definition A.21).

Definition A.24 (Content, Premeasure, Measure, Probability Measure). Let A be a
semiring of subsets of Ω and let µ : A → [0,∞] be a set function with µ(∅) = 0. Then:

• µ is a content if for any finitely many disjoint sets A1, . . . , An ∈ A with
⋃n

i=1 Ai ∈ A,

µ
( n⊎

i=1
Ai

)
=

n∑
i=1

µ(Ai).

• µ is a premeasure if for any countable collection of disjoint sets A1, A2, · · · ∈ A with⋃∞
i=1 Ai ∈ A,

µ
( ∞⊎

i=1
Ai

)
=

∞∑
i=1

µ(Ai).

• µ is a measure if it is a premeasure and A is a σ-algebra (Definition A.5).

• µ is a probability measure if it is a measure and µ(Ω) = 1.

Definition A.25 (Finite, σ-finite measure). Let A be a semiring. A content µ on A
measurs is called a

(i) finite if µ(A) <∞ for every A ∈ A and

(ii) σ-finite if there exists a sequence of sets Ω1, Ω2, · · · ∈ A such that Ω = ⋃∞
n=1 Ωn and

such that µ(Ωn) <∞ for all n ∈ N.

Remark. A measure (Definition A.24), as opposed to a measurable map (Definition A.21),
is defined on a measurable space (Definition A.17) and outputs a nonnegative number. It
measures the size or mass of sets. A measurable maps map between measurable spaces
and have the nice property that their preimages X−1(A) are measurable, i.e. we do not
end up with sets we cannot measure when we look at what sets cause X to take certain
values.
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Definition A.26 (σ-finite measure space). A measure space (Definition A.18) with σ-
finite measure (Definition A.25) is called a σ-finite measure space.

Example A.27. Lebesgue measure (Theorem A.33) on the real numbers is not finite but
σ-finite since ⋃

k∈Z
[k, k + 1] = R and λ(R) = 1.

Hence, (R,B(R), λ) is a σ-finite measure space (Definition A.26).

Definition A.28 (Simple function). Let (Ω,A) be a measurable space (Definition A.17).
A map f : Ω → R is called a simple function if there is an n ∈ N and mutually disjoint
measurable sets Ai, . . . , An ∈ A (Definition A.17), as well as numbers α1, . . . , αn ∈ R,
such that f = ∑n

i=1 αi1Ai.

Remark. A measurable map that assumes only finitely many values is a simple function.

Definition A.29 (Simple function spaces). Let (Ω,A, µ) be a measure space. Denote by
E the vector space of simple functions (Definition A.28) on (Ω,A) and by

E+ := {f ∈ E : f ≥ 0}

the cone of nonnegative simple functions.

Definition A.30 (Normal representation). If

f =
m∑

i=1
αi1Ai (A.1)

for some m ∈ N and for α1, . . . , αm ∈ (0,∞), and for mutually disjoint sets A1, . . . , Am ∈
A, then Equation (A.1) is said to be a normal representation of f .

Definition A.31. Define the map I : E+ → [0,∞] by

I(f) =
m∑

i=1
αiµ(Ai)

if f has normal representation f = ∑
i=1 αi1Ai (Definition A.30).

Definition A.32 (Integral). If f : Ω → [0,∞] is measurable (Definition A.21), then we
define the integral of f with respect to µ by∫

f dµ := sup
{

I(g) : g ∈ E+, g ≤ f
}

(Definition A.31).

Theorem A.33 (Lebesgue measure). There exists a uniquely determined measure λn on
(Rn,B(Rn)) with property

λn((a, b]) =
n∏

i=1
(bi − ai) for all a, b ∈ Rn with a < b.

λn is called the Lebesgue measure on (Rn,B(Rn)) or Lebesgue-Borel measure.

Definition A.34 (Lebesgue σ-algebra). The Lebesgue σ-algebra is

B∗(Rn) = σ(B(Rn) ∪N )

where N is the class of all Lebesgue-Borel null sets (sets where the Lebesgue-Borel measure
(Theorem A.33) evaluates to zero).
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Definition A.35 (Integral of a measurable function). A measurable function f : Ω → R
with R = R ∪ {−∞,∞} is µ-integrable if

∫
|f | dµ <∞. We write

L1(µ) := L1(Ω,A, µ) :=
{

f : Ω→ R : f is measurable and and
∫
|f | dµ <∞

}

Let f−(x) = max(−f(x), 0) and f+ = max(f(x), 0). For f ∈ L1, we define the integral of
f with respect to µ by∫

f(ω) µ(dω) :=
∫

f dµ :=
∫

f+ dµ−
∫

f−dµ.

If we only have
∫

f− dµ < ∞ or
∫

f+ dµ < ∞, then we also define
∫

f dµ in the same
way. In these cases +∞ and −∞, respectively, are possible.

For A ∈ A, we define
∫

A f dµ :=
∫

(f1A) dµ.

Definition A.36 (Lebesgue integral). Let λ be the Lebesgue measure (Theorem A.33) on
Rn. Let f : Rn → R be measurable with respect to B∗(Rn) − B(R) (Definition A.21) and
λ-integretable (Definition A.35). Here B∗(Rn) is the Lebesgue σ-algebra (Definition A.34)
and B(R) is the Borel σ-algebra (Definition A.8). Then we call∫

f dλ

the Lebesgue integral of f . If A ∈ B(Rn) and f : Rn → R is measurable, then we write∫
A

f dλ :=
∫

f 1A dλ .

Definition A.37 (Density). Let µ be a measure (Definition A.24) on (Ω,A) and let
f : Ω → [0,∞) be a measurable map (Definition A.21). If ν is a measure that can be
expressed as integral (Definition A.32)

ν(A) :=
∫

(1Af) dµ for A ∈ A,

we say that ν has density f with respect to µ.

Definition A.38 (Transition kernel, Markov kernel). Let (Ω1,A1) and (Ω2,A2) be mea-
surable spaces. A map

κ : Ω1 ×A2 → [0,∞)
is called a σ-finite transition kernel if:

(i) For every A2 ∈ A2, the function ω 7→ κ(ω, A2) is A1-measurable (Definition A.21).

(ii) For every ω ∈ Ω1, the set function A2 7→ κ(ω, A2) is a σ-finite measure on (Ω2,A2)
(Definition A.25).

If, in (ii), κ(ω, ·) is a probability measure for every ω (i.e. κ(ω, Ω2) = 1), then κ is called
a stochastic kernel or Markov kernel. If instead κ(ω, Ω2) ≤ 1 for all ω, then κ is called
sub-Markov or sub-stochastic.

Definition A.39 (Stochastic process). Let I ⊆ R. A family of random variables X =
(Xt, t ∈ I) (Definition A.20) on probability space (Ω,A, P) (Definition A.17) with values
in Polish space (E, E) (Definition A.15) is called a stochastic process with index set (or
time set) I and range E.
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Definition A.40 (Filtration). Let {Ft}t∈I be a family of σ-algebras (Definition A.5) on
Ω. The family is called a filtration if for all s, t ∈ I with s ≤ t we have

Fs ⊆ Ft.

Definition A.41 (Adapted stochastic process). A stochastic process X = (Xt, t ∈ I)
(Definition A.39) is called adapted to filtration F = {Ft}t∈I (Definition A.40) if Xt is
Ft-measurable (Definition A.21) for all t ∈ I. If Ft = σ(Xs, s ≤ t) for all t ∈ I, then we
denote by F = σ(X) the filtration generated by X.

Definition A.42 (Martingales). Let (Ω,F , P) be a probability space (Definition A.19),
I ⊆ R, and let F be a filtration (Definition A.40). Let X = (Xt)t∈I be a real-valued,
adapted stochastic process (Definition A.41) with E[|Xt|] < ∞ for all t ∈ I. X is called
(with respect to F) a

martingale if E[Xt | Fs] = Xs for all s, t ∈ I with t > s,

submartingale if E[Xt | Fs] ≥ Xs for all s, t ∈ I with t > s,

supermartingale if E[Xt | Fs] ≤ Xs for all s, t ∈ I with t > s.

If Xt ≥ 0 P -almost surely for all t ∈ I, X is called non-negative.

Theorem A.43 (Fubini). For i ∈ {1, 2}, let (Ωi,Ai, µi) be σ-finite measure spaces (Defi-
nition A.26). Let f : Ω1×Ω2 → R be measurable with respect to product-σ-algebra A1⊗A2.
If f ≥ 0 or f ∈ L1(µ1 ⊗ µ2), then

ω1 7→
∫

f(ω1, ω2) µ2(dω2) is µ1-a.e. defined and A1-measurable,

ω2 7→
∫

f(ω1, ω2) µ1(dω1) is µ2-a.e. defined and A2-measurable,

and ∫
Ω1×Ω2

f d(µ1 ⊗ µ2) =
∫ (∫

f(ω1, ω2) µ2(dω2)
)

µ1(dω1)

=
∫ (∫

f(ω1, ω2) µ1(dω1)
)

µ2(dω2) .

Definition A.44 (Absolute continuity, singularity). Let µ : A → [0,∞] and ν : A →
[0,∞] be two measures (Definition A.24) on (Ω,A).

(i) ν is called absolutely continuous with respect to µ (symbolically ν ≪ µ) if

∀A ∈ A. ν(A) = 0 =⇒ µ(A) = 0.

The measures µ and ν are called equivalent (symbolically µ ≈ ν) if ν ≪ µ and
µ≪ ν.

(ii) µ is called singular to ν (symbolically µ ⊥ ν) if there exists an A ∈ A such that
µ(A) = 0 and ν(Ac) = 0.

Example A.45. Dirac measure δ0 (remember δ0({0}) = 1) is singular with respect to the
Lebesgue measure λ (Theorem A.33), symbolically δ0 ⊥ λ, since λ({0}) = δ0(R\ {0}) = 0.
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Example A.46. Measure µ : B(R) → [0,∞] is absolutely continuous with respect to
reference λ([a, b)) = b− a, the Lebesgue measure (Theorem A.33), if

∀A ∈ B(R). λ(A) = 0 =⇒ µ(A) = 0.

Theorem A.47 (Lebesgue’s decomposition theorem). Let µ and ν be σ-finite measures
(Ω,A). Then ν can be uniquely decomposed into an absolutely continuous part νa and a
singular part νs (with respect to µ)

ν = νa + νs, where νa ≪ µ and νs ⊥ µ.

νa has a density with respect to µ, and dνa
dµ is a A-measurable and finite µ-a.e..

Corollary A.48 (Radon-Nikodym theorem). Let µ and ν be σ-finite measures on (Ω,A).
Then

ν has density w.r.t. µ ⇐⇒ ν ≪ µ.

In this case, dν
dµ is A-measurable and finite µ-a.e. dν

dµ is called the Radon-Nikodym deriva-
tive of ν with respect to µ.

Lemma A.49 (Ville’s Inequality (Ville, 1939)). Let (Mt)t≥1 be a non-negative super-
martingale (Definition A.42). Then, for any real number α > 0,

P
(

sup
t≥1

Mt ≥ α

)
≤ E[M1]

α
.



Appendix B

Proofs

B.1 Proof of Laplace’s Method
Assume the conditions in Theorem 2.4.

Let x ∈ Rd and t ∈ (0,∞). Define f̃(x) := f(x) − f(x∗) and h̃(x) := h(x∗)h(x), then
minx∈K f̃(x) = f̃(x∗) = 0. Furthermore, define

y := t1/2(∇2f(x∗))1/2(x− x∗).

Then
x = t−1/2(∇2f(x∗))−1/2y + x∗

and
∂x
∂y = t−1/2(∇2f(x∗))−1/2.

To simplify notation define

f̄t(y) := f̃(t−1/2(∇2f(x∗))−1/2y + x∗) = f(t−1/2(∇2f(x∗))−1/2y + x∗)− f(x∗)

and
h̄t(y) := h(t−1/2(∇2f(x∗))−1/2y + x∗).

We will use that

∇f̄t(y) = t−1/2(∇2f(x∗))−1/2∇f(t−1/2(∇2f(x∗))−1/2y + x∗),
∇f̄t(0) = 0,

and that

(∇2f̄t(y))|y=0 = t−1(∇2f(x∗))−1∇2f(t−1/2∇2f(x∗)−1/20 + x∗)
= t−1(∇2f(x∗))−1∇2f(x∗)
= t−1I.

Using a Taylor expansion (Theorem A.4) of f̄t around 0 we have that

f̄t(y) = 1
2t
∥y∥2 + Rt(y, 0) = 1

2t
∥y∥2 + o(1/t),
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with o(1/t) approaching zero at a rate of at least t.

Define
Kt :=

{
t1/2(∇2f(x∗))1/2(x− x∗) : x ∈ K

}
,

then we may rewrite I(t) as follows:

I(t) =
∫

K
h(x) exp(−tf(x)) dx

=
∫

K
h(x) exp(−t(f̃(x) + f(x∗))) dx

= e−tf(x∗)
∫

K
h(x) exp(−tf̃(x))) dx

= e−tf(x∗)
∫

K
h(t1/2(∇2f(x∗))−1/2y + x∗)

· exp(−tf̃(t−1/2(∇2f(x∗))−1/2y + x∗))
∣∣∣∣det ∂x

∂y

∣∣∣∣ dy

= exp(−tf(x∗))
td/2|det∇2f(x∗)|1/2

∫
t1/2(∇2f(x∗))1/2(K−x∗)

h̄t(y) exp(−tf̄(y)) dy

= exp(−tf(x∗))
td/2|det∇2f(x∗)|1/2

∫
t1/2(∇2f(x∗))1/2(K−x∗)

h̄t(y) exp
(
−1

2∥y∥
2 + Rt(y, 0)

)
dy

= exp(−tf(x∗))
td/2|det∇2f(x∗)|1/2

∫
Rd

1{y ∈ Kt}h̄t(y) exp
(
−1

2∥y∥
2 + Rt(y, 0)

)
dy.

For all y ∈ Rd, Rt(y, 0) = o(1/t) and limt→∞ h̄t(y) = h(x∗), so we have limit

lim
t→∞

1{y ∈ Kt}h̄t(y) exp
(
−1

2∥y∥
2 + Rt(y, 0)

)
= h(x∗) exp

(
−1

2∥y∥
2
)

.

Furthermore, for all t ∈ (0,∞) and all y ∈ Rd we can bound∣∣∣∣1{y ∈ Kt}h̄t(y) exp
(
−1

2∥y∥
2 + Rt(y, 0)

)∣∣∣∣ =
∣∣∣1{y ∈ Kt}h̄t(y) exp

(
−tf̄(y)

)∣∣∣
=
∣∣∣1{y ∈ Kt}h̄t(y)

∣∣∣ · ∣∣∣exp
(
−tf̄(y)

)∣∣∣
≤
∣∣∣1{y ∈ Kt}h̄t(y)

∣∣∣
≤
∣∣∣∣1{y ∈ Kt}max

z∈Kt

h̄t(z)
∣∣∣∣ .

Since

max
y∈Kt

h̄t(y) = max
y∈Kt

h(t−1/2(∇2f(x∗))−1/2y + x∗)

= max
x∈K

h(t−1/2(∇2f(x∗))−1/2t1/2(∇2f(x∗))1/2(x− x∗) + x∗)

= max
x∈K

h(x− x∗ + x∗)

= max
x∈K

h(x),

h is continuous and K ⊆ R is compact,∫
Rd
|1{y ∈ Kt}|max

z∈Kt

∣∣∣h̄t(z) dy
∣∣∣ =

∫
K

∣∣∣∣max
x∈K

h(x)
∣∣∣∣ <∞,
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that is
|1{y ∈ Kt}|max

z∈Kt

∣∣∣h̄t(z)
∣∣∣

is integrable in the Lebesgue-sense.

By the dominated convergence theorem and the fact that∫
Rd

exp
(
−1

2∥y∥
2
)

dy = (2π)d/2

is the normalizer of the d-dimensional standard normal density we have

lim
t→∞

∫
Rd

1{y ∈ Kt}h̄t(y) exp
(
−1

2∥y∥
2 + Rt(y, 0)

)
dy

=
∫
Rd

lim
t→∞

1{y ∈ Kt}h̄t(y) exp
(
−1

2∥y∥
2 + Rt(y, 0)

)
dy

=
∫
Rd

h(x∗) exp
(
−1

2∥y∥
2
)

dy

= h(x∗)(2π)d/2.

Define
I ′(t) := h(x∗)

|det∇2f(x∗)|1/2

(2π

t

)d/2
exp(−tf(x∗)).

Then

lim
t→∞

I(t)
I ′(t)

= lim
t→∞

( exp(−tf(x∗))
td/2| det∇2f(x∗)|1/2

∫
Rd

1{y ∈ Kt}h̄t(y) exp
(
−1

2∥y∥
2 + Rt(y, 0)

)
dy
)

td/2| det∇2f(x∗)|1/2

exp(−tf(x∗))h(x∗)(2π)d/2

= lim
t→∞

1
h(x∗)(2π)d/2

∫
Rd

1{y ∈ Kt}h̄t(y) exp
(
−1

2∥y∥
2 + Rt(y, 0)

)
dy

= 1
h(x∗)(2π)d/2 lim

t→∞

∫
Rd

1{y ∈ Kt}h̄t(y) exp
(
−1

2∥y∥
2 + Rt(y, 0)

)
dy

= h(x∗)(2π)d/2

h(x∗)(2π)d/2 = 1.

Hence, by Definition A.2 I(t) and I ′(t) are asymptotically equivalent, symbolically

I(t) ∼ I ′(t).

B.2 Proof of the Prior Likelihood Mixing Theorem
Assume the conditions in Theorem 2.3.

Next, define the concept of a likelihood ratio and marginal likelihood ratio.

Definition B.1 (Likelihood Ratio (Kirschner et al., 2025)). For all ν, θ ∈ Θ and all steps
t ∈ N we call

Rt(ν, θ) :=
t∏

s=1

ps(ys | ν)
ps(ys | θ)

their likelihood ratio at step t.
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Definition B.2 (Marginal Likelihood Ratio (Kirschner et al., 2025)). For all ν, θ ∈ Θ,
steps t ∈ N and data-independent prior distributions µ0 ∈P(Θ). We call

Qt(θ) :=
∫

Rt(ν; θ) dµ0(ν) =
∫ ∏t

s=1 ps(ys | ν) dµ0(ν)∏t
s=1 ps(ys | θ)

the marginal likelihood ratio of θ ∈ Θ with respect to µ0 and (Qs(θ), s ∈ N) the marginal
likelihood ratio process with respect to µ0.

Let F ′ = (F ′
t, t ∈ N) be a filtration (Definition A.40) on Ω for which for all t ∈ N

F ′
t = σ ((Xs, Ys), s ∈ [t]) (Definition A.23)

By construction, (Qs, s ∈ N) is an adapted stochastic process (Definition A.41) with
respect to F ′. We first show that the stochastic process (Definition A.39) is a nonnegative
martingale (Definition A.42) with E[Q1(θ∗)] = 1.

Using Fubini’s theorem (Theorem A.43) we have

E[Qt(θ∗) | F ′
t−1] =

∫ ∫
pt(y | ν)∏t−1

s=1 ps(ys | ν) dµ0(ν)
pt(y | θ∗)∏t−1

s=1 ps(ys | θ∗)
dPθ∗(y | xt)

=
∫ ∫

pt(y | ν)∏t−1
s=1 ps(ys | ν) dµ0(ν)∏t−1

s=1 ps(ys | θ∗)
dξ(y)

= 1∏t−1
s=1 ps(ys | θ∗)

∫ (∫
pt(y | ν)

t−1∏
s=1

ps(ys | ν) dµ0(ν)
)

dξ(y)

= 1∏t−1
s=1 ps(ys | θ∗)

∫ (∫
pt(y | ν)

t−1∏
s=1

ps(ys | ν) dξ(y)
)

dµ0(ν)

= 1∏t−1
s=1 ps(ys | θ∗)

∫ t−1∏
s=1

ps(ys | ν)
(∫

pt(y | ν) dξ(y)
)

︸ ︷︷ ︸
=1

dµ0(ν)

=
∫ ∏t−1

s=1 ps(ys | ν) dµ0(ν)∏t−1
s=1 ps(ys | θ∗)

= Qt−1(θ∗).

Furthermore,

E[Q1(θ∗)] =
∫ ∫

p1(y | ν) dµ0(ν)
p1(y | θ∗) dPθ∗(y1 | x1)

=
∫ ∫

p1(y | ν) dµ0(ν)
p1(y | θ∗) dPθ∗(y1 | x1)

=
∫ (∫

p1(y | ν) dµ0(ν)
)

dξ(y)

=
∫ (∫

p1(y | ν) dξ(y)
)

︸ ︷︷ ︸
=1

dµ0(ν) = 1

Since for all ν ∈ Θ, y ∈ Y, t ∈ N and x ∈ X

pν(y | x) ≥ 0 and µ0 ≥ 0,
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we have that Qt(θ∗) ≥ 0 P-almost surely. Hence, by Definition A.42, (Qt(θ∗), t ∈ N) is a
non-negative martingale.

Since every martingale is a supermartingale (Definition A.42), (Qt(θ∗), t ∈ N) is a non-
negative supermartingale and we may apply Ville’s inequality (Lemma A.49).

Applying Ville’s inequality yields

P
(

sup
t∈N

Qt(θ∗) ≥ 1
δ

)
≤ δ.

Since

P
(

sup
t∈N

Qt(θ∗) ≥ 1
δ

)
≤ δ

=⇒ P
(

sup
t∈N

Qt(θ∗) >
1
δ

)
≤ δ

⇐⇒ P
(

sup
t∈N

Qt(θ∗) ≤ 1
δ

)
≥ 1− δ

⇐⇒ P
(
∀t ∈ N : Qt(θ∗) ≤ 1

δ

)
≥ 1− δ

⇐⇒ P
(
∀t ∈ N : log Qt(θ∗) ≤ log 1

δ

)
≥ 1− δ

⇐⇒ P
(
∀t ∈ N : log

∫ t∏
s=1

ps(ys | ν) dµ0(ν) + Lt(θ∗) ≤ log 1
δ

)
≥ 1− δ

⇐⇒ P
(
∀t ∈ N : Lt(θ∗) ≤ log 1

δ
− log

∫ t∏
s=1

ps(ys | ν) dµ0(ν)
)
≥ 1− δ,

the sequence (Ct(βplm
t (δ), t ∈ N) with

βplm
t (δ) = log 1

δ
− log

∫ t∏
s=1

ps(ys | ν) dµ0(ν)

is a confidence sequence for θ∗ at level δ.

B.3 Proof of the Sequential Likelihood Mixing Theorem

Assume the conditions in Theorem 2.5.

Definition B.3. For all steps t ∈ N and parameters θ ∈ Θ define the sequential marginal
likelihood ratio St(θ) with respect to mixing distributions µ0, µ1, · · · ∈P(Θ) as follows

St(θ) :=
t∏

s=1

∫
ps(ys | ν) dµs−1(ν)

ps(ys | θ) .

Since the product of zero terms is 1, E[S0(θ∗)] = 1.
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By Fubini’s theorem (Theorem A.43), for all steps t ∈ N

E[St(θ∗) | F ′
t] =

∫ (∫
pt(y | ν) dµt−1(ν)

) t−1∏
s=1

∫
ps(ys | ν) dµs−1(ν)

ps(ys | θ∗) dξ(y)

=
t−1∏
s=1

∫
ps(ys | ν) dµs−1(ν)

ps(ys | θ∗)

∫ (∫
pt(y | ν) dµt−1(ν)

)
dξ(y)

=
t−1∏
s=1

∫
ps(ys | ν) dµs−1(ν)

ps(ys | θ∗)

∫ (∫
pt(y | ν) dξ(y)

)
dµt−1(ν)

=
t−1∏
s=1

∫
ps(ys | ν) dµs−1(ν)

ps(ys | θ∗) = St−1(θ∗).

It follows from Definition A.42 that (Ss(θ∗), s ∈ N) is a martingale. Moreover, since for
all steps t ∈ N, parameters ν ∈ Θ and all (xt, yt) ∈ (X × Y),

µt−1 ≥ 0 and pt(yt | ν) ≥ 0,

(St(θ∗), t ∈ N) is a nonnegative martingale (Definition A.42).

Ville’s inequality (Lemma A.49) implies that

P
(
∃t ∈ N : St(θ∗) ≥ 1

δ

)
≤ δ. (B.1)

Equation (B.1) implies

P
(
∀t ∈ N : St(θ∗) ≤ 1

δ

)
≥ 1− δ.

and
P
(
∀t ∈ N : logSt(θ∗) ≤ log 1

δ

)
︸ ︷︷ ︸

=(∗)

≥ 1− δ.

Since for all t ∈ N

logSt(θ∗) = Lt(θ∗) +
t∑

s=1
log

∫
ps(ys | ν) dµs−1(ν),

we have

(∗) = P
(
∀t ∈ N : Lt(θ∗) ≤ log 1

δ
−

t∑
s=1

log
∫

ps(ys | ν) dµs−1(ν)
)
≥ 1− δ.

Hence, (Ct(βslm
t (δ)), t ∈ N) with

βslm
t (δ) = log 1

δ
−

t∑
s=1

log
∫

ps(ys | ν) dµs−1(ν)

is a confidence sequence for θ∗ at level δ.
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B.4 Proof of the Mixing Equivalence
Assume the conditions in Theorem 2.6.

Furthermore, for all s ∈ N0, define

Ms :=
∫ s∏

u=1
pu(yu | ν) dµ0(ν).

Then for all t ∈ N
t∑

s=1
log

∫
ps(ys | ν) dµs−1(ν) =

t∑
s=1

log
∫

ps(ys | ν)M−1
s−1

s−1∏
u=1

pu(yu | ν) dµ0(ν)

=
t∑

s=1
log

∫
ps(ys | ν)

s−1∏
u=1

pu(yu | ν) dµ0(ν)−
t−1∑
s=0

log Ms

=
t∑

s=1
log

∫ s∏
u=1

pu(yu | ν) dµ0(ν)−
t−1∑
s=0

log Ms

=
t∑

s=1
log Ms −

t−1∑
s=0

log Ms

= log Mt − log M0

= log
∫ t∏

u=1
pu(yu | ν) dµ0(ν)− log

∫ 0∏
u=1

pu(yu | ν) dµ0(ν)

= log
∫ t∏

u=1
pu(yu | ν) dµ0(ν)

implies that
t∑

s=1
log

∫
ps(ys | ν) dµs−1(ν) = log

∫ t∏
s=1

ps(ys | ν) dµ0(ν). (B.2)

Theorems 2.3 and 2.5 and Equation (B.2) imply that for all t ∈ N

βplm
t (δ) = log 1

δ
− log

∫ t∏
s=1

ps(ys | ν) dµ0(ν)

= log 1
δ
−

t∑
s=1

log
∫

ps(ys | ν) dµs−1(ν) = βslm
t (δ).

B.5 Proof of First DDPM Lemma
Given a fixed T ∈ N, we prove Lemma 3.1 by induction over τ ∈ [T ]. We want to show
that for all τ ∈ N and θ(τ), θ(τ−1) ∈ Θ

q(θ(τ) | θ(0)) = N
(
θ(τ);

√
ᾱτ θ(0), (1− ᾱτ )I

)
.

with ατ = 1− βτ and ᾱτ = ∏τ
s=1 αs.

Base case. If τ = 1, by definition of the forward transition, for all θ(1), θ(0) ∈ Θ

q(θ(1) | θ(0)) = N
(
θ(1);√α1 θ(0), (1− α1)I

)
,
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which coincides with the desired form since ᾱ1 = α1 and 1− ᾱ1 = 1− α1.

Induction step. Assume that for some τ ∈ {2, . . . , T} the statement holds at τ − 1, i.e.,
for all θ(0), θ(τ−1) ∈ Θ,

q(θ(τ−1) | θ(0)) = N
(
θ(τ−1);

√
ᾱτ−1θ(0), (1− ᾱτ−1)I

)
.

Then we may reparameterize the random variable ϑ(τ−1) as follows:

ϑ(τ−1) d=
√

ᾱτ−1ϑ(0) +
√

1− ᾱτ−1 r(τ−1), r(τ−1) ∼ N (0, I) (B.3)

with r(τ−1) independent of ϑ(0). The definition of forward transitions implies that for all
τ ∈ [T ]

ϑ(τ) d= √ατ ϑ(τ−1) +
√

1− ατ r̃(τ−1), r̃(τ−1) ∼ N (0, I), (B.4)

with r̃(τ−1) independent of ϑ(τ−1).

Plugging Equation (B.3) into Equation (B.4) yields

ϑ(τ) d= √ατ

(√
ᾱτ−1ϑ(0) +

√
1− ᾱτ−1 r(τ−1)

)
+
√

1− ατ r̃(τ−1)

=
√

ᾱτ ϑ(0) +
√

ατ (1− ᾱτ−1) r(τ−1) +
√

1− ατ r̃(τ−1).

with ϑ(0), r(τ−1), r̃(τ−1) mutually independent and r(τ−1), r̃(τ−1) ∼ N (0, I). This shows
that for all θ(0) ∈ Θ, given ϑ(0) = θ(0), the random variable ϑ(τ) is Gaussian. Its condi-
tional mean is

Eϑ(τ)

[
ϑ(τ)

∣∣∣ϑ(0) = θ(0)
]

=
√

ᾱτ θ(0).

Using the independence of r(τ−1) and r̃(τ−1), its conditional covariance is

Covϑ(τ)

(
ϑ(τ) | ϑ(0) = θ(0)

)
= ατ (1− ᾱτ−1)I + (1− ατ )I

=
(
1− ατ ᾱτ−1

)
I =

(
1− ᾱτ

)
I.

Therefore, for all θ(0), θ(τ) ∈ Θ, we have

q(θ(τ) | θ(0)) = N
(
θ(τ);

√
ᾱτ θ(0), (1− ᾱτ )I

)
.
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B.6 Proof of Second DDPM Lemma
We prove Lemma 3.2. Let τ ∈ [T ] and θ(τ), θ(τ−1), θ(0) ∈ Θ. Using Bayes’ rule (first step),
the definition of the forward process, and Lemma 3.1 (second step) we obtain

q(θ(τ−1) | θ(τ), θ(0))

= q(θ(τ) | θ(τ−1)) q(θ(τ−1) | θ(0))
q(θ(τ) | θ(0))

= N
(
θ(τ);√ατ θ(τ−1), βτ I

) N(θ(τ−1);√ᾱτ−1 θ(0), (1− ᾱτ−1)I
)

N
(
θ(τ);

√
ᾱτ θ(0), (1− ᾱτ )I

)
∝ exp

(
−∥θ

(τ) −
√

1− βτ θ(τ−1)∥2

2βτ
− ∥θ

(τ−1) −
√

ᾱτ−1θ(0)∥2

2(1− ᾱτ−1) + ∥θ
(τ) −

√
ᾱτ θ(0)∥2

2(1− ᾱτ )

)

∝ exp

−
1
2

(
∥θ(τ) −

√
1− βτ θ(τ−1)∥2

βτ
+ ∥θ

(τ−1) −
√

ᾱτ−1θ(0)∥2

1− ᾱτ−1

)
︸ ︷︷ ︸

=:(∗)

 .

Rewriting (∗)

(∗) = ∥θ
(τ) −

√
1− βτ θ(τ−1)∥2

βτ
+ ∥θ

(τ−1) −
√

ᾱτ−1 θ(0)∥2

1− ᾱτ−1

= 1
βτ

(
∥θ(τ)∥2 − 2

√
1− βτ θ(τ)⊤θ(τ−1) + (1− βτ )∥θ(τ−1)∥2

)
+ 1

1− ᾱτ−1

(
∥θ(τ−1)∥2 − 2

√
ᾱτ−1 θ(τ−1)⊤θ(0) + ᾱτ−1∥θ(0)∥2

)
=
(1− βτ

βτ
+ 1

1− ᾱτ−1

)
∥θ(τ−1)∥2

− 2θ(τ−1)⊤
(√

1− βτ

βτ
θ(τ) +

√
ᾱτ−1

1− ᾱτ−1
θ(0)

)
+ const.

= θ(τ−1)⊤
(1− βτ

βτ
+ 1

1− ᾱτ−1

)
I︸ ︷︷ ︸

=:Aτ

θ(τ−1) − 2
(√

1− βτ

βτ
θ(τ) +

√
ᾱτ−1

1− ᾱτ−1
θ(0)

)⊤

︸ ︷︷ ︸
=:b⊤

τ

θ(τ−1) + const.

Hence,

(∗) =
(
θ(τ−1) −A−1

τ bτ

)⊤
Aτ

(
θ(τ−1) −A−1

τ bτ

)
+ const.

Using ατ = 1− βτ and ᾱτ = ατ ᾱτ−1,

Aτ =
(1− βτ

βτ
+ 1

1− ᾱτ−1

)
I = 1− ᾱτ

βτ (1− ᾱτ−1)I, A−1
τ = βτ (1− ᾱτ−1)

1− ᾱτ
I.

Hence

A−1
τ bτ = βτ (1− ᾱτ−1)

1− ᾱτ

(√
1− βτ

βτ
θ(τ) +

√
ᾱτ−1

1− ᾱτ−1
θ(0)

)
=
√

ατ (1− ᾱτ−1)
1− ᾱτ

θ(τ)+
√

ᾱτ−1βτ

1− ᾱτ
θ(0).
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Define

µ̃τ (θ(τ), θ(0)) :=
√

ᾱτ−1βτ

1− ᾱτ
θ(0) +

√
ατ (1− ᾱτ−1)

1− ᾱτ
θ(τ), β̃τ := βτ (1− ᾱτ−1)

1− ᾱτ
.

Then

q
(
θ(τ−1) | θ(τ), θ(0)

)
∝
(
θ(τ−1) −A−1

τ bτ

)⊤
Aτ

(
θ(τ−1) −A−1

τ bτ

)
∝ exp

(
−1

2
(
θ(τ−1) − µ̃(θ(τ), θ(0))

)⊤
β̃−1

τ I
(
θ(τ−1) − µ̃(θ(τ), θ(0))

))
.

Thus
q
(
θ(τ−1) | θ(τ), θ(0)

)
= N

(
θ(τ−1); µ̃τ (θ(τ), θ(0)), β̃τ I

)
.

B.7 Proof of Third DDPM Lemma
We prove Lemma 3.3. Let τ ∈ {2, . . . , T}. By definition,

Lτ−1 = Eϑ(0:T )

[
DKL

(
q(ϑ(τ−1) | ϑ(τ), ϑ(0)) ∥ pϕ(ϑ(τ−1) | ϑ(τ))

)]
.

Write the KL divergence as an inner expectation:

Lτ−1 = Eϑ(0:T )

[
Eϑ(τ−1)

[
log q(ϑ(τ−1) | ϑ(τ), ϑ(0))− log pϕ(ϑ(τ−1) | ϑ(τ))

∣∣∣ϑ(τ), ϑ(0)
]]

= −Eϑ(0:T )

[
Eϑ(τ−1)

[
log pϕ(ϑ(τ−1) | ϑ(τ))

∣∣∣ϑ(τ), ϑ(0)
]]

+ const..

The Gaussian parameterization of the reverse transition implies that for all θ(τ), θ(τ−1) ∈ Θ

− log pϕ(θ(τ−1) | θ(τ)) = 1
2σ2

τ

∥∥θ(τ−1) − µϕ(θ(τ), τ)
∥∥2 + const..

Hence

Lτ−1 = 1
2σ2

τ

Eϑ(0:T )

[
Eϑ(τ−1)

[∥∥∥ϑ(τ−1) − µϕ(ϑ(τ), τ)
∥∥∥2
∣∣∣∣ϑ(τ), ϑ(0)

]]
+ const. (B.5)

Lemma 3.2 allows us to simplify the inner expectation

Eϑ(τ−1)

[∥∥∥ϑ(τ−1) − µϕ(ϑ(τ), τ)
∥∥∥2
∣∣∣∣ϑ(τ), ϑ(0)

]
= ∥µϕ(ϑ(τ), τ)∥2 − 2µT

ϕ(ϑ(τ), τ)Eϑ(τ−1)

[
ϑ(τ−1)

∣∣∣ϑ(τ), ϑ(0)
]

+ const.

= ∥µϕ(ϑ(τ), τ)∥2 − 2µT
ϕ(ϑ(τ), τ)µ̃τ (ϑ(τ), ϑ(0)) + const.

= ∥µϕ(ϑ(τ), τ)− µ̃τ (ϑ(τ), ϑ(0))∥2 + const. (B.6)

Substituting Equation (B.6) into Equation (B.5) yields

Lτ−1 = 1
2σ2

τ

Eϑ(0:T )

[∥∥∥µϕ(ϑ(τ), τ)− µ̃τ (ϑ(τ), ϑ(0))
∥∥∥2
]

+ const.,

which is the claim.
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Plots and Algorithms

C.1 Confidence Coefficients
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Figure C.1: Confidence coefficients, differences between confidence coefficients and nega-
tive log-likelihood of the true image, and normalized confidence coefficients over acquisition
steps. Here, acquisition time Ta = 1 and starting step t0 = 1.



C.1 Confidence Coefficients 75

103

104

C
on

fi
de

nc
e

co
effi

ci
en

t
β
t(
δ)

101

102

103

D
iff

er
en

ce
β
t(
δ)

-
L
t(
θ
∗ )

60 80 100 120 140 160 180
Acquisition step t

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

co
nfi

de
nc

e
co

effi
ci

en
t
β̃
t(
δ)

P-SN

P-LN

P-UMix

P-UMed

P-DMix

P-DMed

S-MLE

S-MAP

S-UMix

S-UMed

S-DMix

S-DMed

Figure C.2: Confidence coefficients, differences between confidence coefficients and nega-
tive log-likelihood of the true image, and normalized confidence coefficients over acquisition
steps. Here, acquisition time Ta = 1 and starting step t0 = 60.
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Figure C.3: Confidence coefficients, differences between confidence coefficients and nega-
tive log-likelihood of the true image, and normalized confidence coefficients over acquisition
steps. Here, acquisition time Ta = 1 and starting step t0 = 120.
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Figure C.4: Confidence coefficients, differences between confidence coefficients and nega-
tive log-likelihood of the true image, and normalized confidence coefficients over acquisition
steps. Here, acquisition time Ta = 100 and starting step t0 = 1.
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Figure C.5: Confidence coefficients, differences between confidence coefficients and nega-
tive log-likelihood of the true image, and normalized confidence coefficients over acquisition
steps. Here, acquisition time Ta = 100 and starting step t0 = 60.
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Figure C.6: Confidence coefficients, differences between confidence coefficients and nega-
tive log-likelihood of the true image, and normalized confidence coefficients over acquisition
steps. Here, acquisition time Ta = 100 and starting step t0 = 120.
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Figure C.7: Confidence coefficients, differences between confidence coefficients and nega-
tive log-likelihood of the true image, and normalized confidence coefficients over acquisition
steps. Here, acquisition time Ta = 10000 and starting step t0 = 1.
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Figure C.8: Confidence coefficients, differences between confidence coefficients and nega-
tive log-likelihood of the true image, and normalized confidence coefficients over acquisition
steps. Here, acquisition time Ta = 10000 and starting step t0 = 60.
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Figure C.9: Confidence coefficients, differences between confidence coefficients and nega-
tive log-likelihood of the true image, and normalized confidence coefficients over acquisition
steps. Here, acquisition time Ta = 10000 and starting step t0 = 120.
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Figure C.10: RMSE of mean, median as well as individual U-Net ensemble member predic-
tions against acquisition steps. Steps t ∈ N corresponds to data sequence ((xs, ys), s ∈ [t])
being used.
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Figure C.11: ZeroOne loss of mean, median as well as individual U-Net ensemble mem-
ber predictions against acquisition steps. Steps t ∈ N corresponds to data sequence
((xs, ys), s ∈ [t]) being used.
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Figure C.12: ℓ1 loss of mean, median as well as individual U-Net ensemble member predic-
tions against acquisition steps. Steps t ∈ N corresponds to data sequence ((xs, ys), s ∈ [t])
being used.
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Figure C.13: Structural similarity of mean, median as well as individual U-Net ensemble
member predictions against acquisition steps. Steps t ∈ N corresponds to data sequence
((xs, ys), s ∈ [t]) being used.



C.3 MLE and MAP Estimation 85

C.3 MLE and MAP Estimation

Algorithm 4 Batched MLE/MAP Estimation with Early Stopping
Require: Sinograms S1:T , angles x1:T , initial FBP estimates θFBP

1:T
Require: Prior parameters µ, σ (for MAP only), acquisition time Ta

Require: Optimization parameters: maxSteps, patience, initial learning rate η0
1: Initialize parameters: θt ← θFBP

t for t = 1, . . . , T
2: Initialize active set: A ← {1, 2, . . . , T}
3: Initialize best images: θ∗

t ← θt for all t
4: Initialize minimum losses: L∗

t ← +∞ for all t
5: Initialize patience counters: pt ← patience for all t
6: Initialize Adam optimizer (Kingma and Ba, 2017) with per-slice parameter groups
7: for k = 1 to maxSteps do
8: if thenA = ∅
9: break

10: end if
11: Clamp active images: θt ← clamp(θt, 0, Ta) for t ∈ A
12: Ltotal ← 0
13: for each t ∈ A do
14: Compute forward projection: Ŝt ← R(θt, x1:t)
15: Compute negative log-likelihood Lt ←

∑t
i=1

[
Ŝt,i − St,i log(Ŝt,i + ϵ) + log Γ(St,i + 1)

]
16: if MAP mode then
17: Add prior term: Lt ← Lt −

∑
j logN (θt,j |µj , σ2

j )
18: end if
19: Ltotal ← Ltotal + Lt

20: if Lt < L∗
t then

21: L∗
t ← Lt, θ∗

t ← θt, pt ← patience
22: else
23: pt ← pt − 1
24: end if
25: end for
26: Compute gradients: ∇Ltotal
27: Clean NaN/Inf gradients and clip gradients
28: Update parameters using optimizer
29: Handle NaN/Inf in parameters by reverting to best images
30: for each t ∈ A do
31: if divergence detected: pt < patience/2 and Lt > 1.05 · L∗

t then
32: Reset: θt ← θ∗

t , pt ← patience
33: Halve learning rate: ηt ← max(ηt/2, η0/10)
34: else if Lt > 1.01 · L∗

t then
35: pt ← patience
36: end if
37: if pt ≤ 0 then
38: Freeze slice: remove t from A
39: end if
40: end for
41: end for
42: return Best reconstructions { 1

Ta
θ∗

t }Tt=1
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